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We present an ab initio treatment of the steady-state of lasers with injected signals that describes a regime,
valid for microlasers, in which the locking transition is dominated by cross saturation and spatial hole burning.
The theory goes beyond standard approaches and treats multimode lasing with injected signals and finds the
possibility of partially locked states and as well as repulsion of the free-running frequencies from the injected
signal. The theory agrees well with exact integration of the full wave and matter equations for the system. It can
also describe accurately complex modern lasers structures and is applied to the example of deformed disk lasers.
We show that in the case of a one-dimensional cavity in the locked or regenerative amplifier regime the theory

reduces to an improved version of the Adler equations in the appropriate limit.
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I. INTRODUCTION

Laser action in the presence of an injected signal is an
extremely important topic for research in both nonlinear
dynamics and laser physics and for applications of lasers.
Under certain conditions, a laser mode can be locked to the
injection frequency, allowing for stabilization and modulation
of a “slave” laser based on control by a “master” laser. This
and related effects have been the topic of a large literature
going back to the beginning of laser theory [1-4] and certain
features are now well-described in textbook treatments [5],
where the basic paradigm is that of frequency locking of
nonlinear oscillators as described by Adler [6] well before
the invention of the laser.

From the mid-1970s onward [7], it was also appreciated that
lasers with injected signals can exhibit complex dynamical
behavior and even chaos based on the general principle of
nonlinear dynamics that damped driven nonlinear systems with
three or more independent time-varying fields generically have
nontrivial dynamics over large regions of phase space [8,9].
Since the basic laser equations involve three distinct and
possibly complex functions (the electric field, the polarization,
and the inversion amplitudes) a self-oscillating laser without
injection can exhibit this behavior [7], but in most lasers the
time scales are such that the polarization field (Class B) or
the polarization and inversion (Class A) can be adiabatically
eliminated and treated as functions of the other variables,
leaving only one or two independent field(s).

Class B lasers are by far the most common type (they
include semiconductor and most other solid state lasers),
and so injecting an additional signal can in many cases
generate interesting dynamical states outside the locking
region. Hence Class B lasers with an injected signal have
been used extensively to study such states in the past 30 years.
Deterministic chaos was first reported in Class B lasers with
injected signals by Arecchi et al. [10], who introduced the
Class A, B, and C categories based on the relative size of
the decay rates of the electric field, «, polarization, y, , and
inversion of the gain medium, yj. (Class C is the case in
which all time constants are comparable, none of the fields
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can be adiabatically eliminated, and the laser in isolation
can exhibit chaotic dynamics. These lasers are very rare and
are not technologically important.) The goal of much of this
earlier work has been to understand and categorize all of the
different regimes of stability, bistability, and instability for
injected class B lasers [10-15]. These interesting dynamical
effects arise because the injected signal beats against the
existing, free-running laser output and drives the inversion to
oscillate at this beat frequency. When this frequency coincides
with other relevant dynamical scales in the laser, usually the
frequency of the relaxation oscillations, w, ~ /Ky, resonant
driving occurs, leading to complex dynamics. In addition, for
semiconductor lasers, there are dynamical scales associated
with the dispersion of the gain medium [16], and to carrier
dynamics, which enter the equations as well; these effects
arise from the real part of the gain susceptibility at the lasing
frequency and are quantified by the Henry « factor [11,16—18].

In the current work we develop a theory of injection locking
of Class A and B lasers in a regime relevant particularly
to microlasers, in which complex dynamical states do not
arise, and for atomiclike gain media for which the o factor
is negligible. The existence of such a regime does not seem
to have been clearly identified in previous work on injection
locking. In this regime the physical effect is primarily that
of quenching of the free-running laser oscillation due to
cross saturation. There have been some relatively recent
works [19,20] emphasizing locking through cross saturation as
opposed to synchronization, but these models do not include
spatial hole burning, which we find to play an important role,
and the models also involve many more approximations than
our method, which is essentially an exact solution of the
problem in the relevant regime.

Our approach is a generalization of steady-state ab initio
laser theory (SALT) which has previously been shown to
provide extremely accurate solutions of the multimode laser
equations, again in a regime relevant particularly to micro-
lasers. SALT keeps the full space dependence of the electric
field, polarization, and inversion and hence goes beyond the
earlier treatments that led to the classifications A, B, and C,
where these quantities were only functions of time. We retain
this terminology to reference the hierarchy of time scales, but
refer to the electric field, polarization, and inversion as fields.
The accuracy of the generalized theory, injection-SALT, or

©2014 American Physical Society


http://dx.doi.org/10.1103/PhysRevA.90.013840

ALEXANDER CERJAN AND A. DOUGLAS STONE

I-SALT, is here confirmed by direct simulation of the relevant
Maxwell-Bloch equations describing the laser with injected
signal. In the limit where the laser is locked to the input
signal we show that an approximate treatment of our theory
reduces to an Adler type of steady-state solution, but that the
behavior outside of the locking range is completely different
than expected from the Adler description. Moreover, the Adler
approximation is not very accurate for the phase difference
between the locked input signal and the resulting amplified
output.

To present I-SALT it is useful to review briefly SALT
and the assumptions underlying that theory. SALT is based
on a multiperiodic ansatz for the steady-state solutions of
the semiclassical Maxwell-Bloch equations describing lasing.
After transient effects have subsided it is assumed that the
electric field in the laser cavity is a sum of some number,
Ny, of unknown lasing modes, W, (x), with unknown lasing
frequencies, w,,, which are found by solving self-consistent
coupled nonlinear frequency-domain wave equations (see
below). These equations include space-dependent saturation
of the gain and mode competition to infinite order. The number
of lasing modes is not assumed to be known, but is also
determined self-consistently from the theory, which predicts
the thresholds including the effects of mode competition.
The theory treats the openness of the cavity exactly through
the introduction of a non-Hermitian basis set of outgoing
functions, which are termed the threshold constant flux (TCF)
basis and which will play a crucial role in I-SALT. The
theory is also formulated for arbitrary cavity geometries and
mode functions, so it is well suited to treat novel modern
microlasers such as those based on disk, toroid, photonic
crystal, or random cavities [21-24]. SALT is easily generalized
to N-level lasing with a single lasing transition (not mode) and
with minor complications can be applied to multiple lasing
transitions and more complex gain media, as long as the
basic approximation underlying the theory holds. The only
substantial approximation in SALT is the neglect of the field
beating terms in the multimode regime which can lead to
complex dynamics and destabilize the multimode solution.
This approximation leads to an inversion density which varies
in space but not in time; hence, we refer to it as the stationary
inversion approximation (SIA). By its nature, SALT and its
generalization to I-SALT, will not describe complex dynamical
effects in injected lasers of the type mentioned above.

However, as noted, there is an interesting regime in which
such effects do not occur, and in which SALT and I-SALT
will describe accurately the steady-state lasing or lasing with
injection in either the locked or unlocked state. The theories
will predict fully the classical fields, their frequencies, output
power, emission pattern, etc., except properties due to quantum
fluctuations, such as the linewidth. However, recent extensions
of SALT [25,26] have found exact linewidth formulas which
are generalizations of Schawlow-Townes based on SALT solu-
tions. SALT without injection has been compared to full finite
difference time domain (FDTD) simulations of microlasers
using the Maxwell-Bloch and N-level semiclassical lasing
equations and has been found to agree very well with a much
reduced computational overhead. For higher dimensional
structures and the full vector Maxwell equations SALT can
be used where FDTD is computationally impractical [27,28].
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II. VALIDITY OF SALT AND I-SALT

We now address the validity of the SIA which will define
the regime of validity of multimode SALT and of I-SALT.
A number of works in early laser theory rely on the SIA,
including a seminal paper by Spencer and Lamb [4], which
derives the Adler equations for the injected laser from the
Maxwell equations with injection into a cavity with uniform
gain. Most relevant to our work is that of Fu and Haken in
1991 [29], who argued that the SIA was valid and steady-
state multimode operation was possible as long as yj,k <
y1,A, where y, is the relaxation rate of the polarization and
A is the free spectral range of the laser. They then studied a
simplified model of a Fabry-Perot-type laser and showed that
the multimode state with the largest number of modes was
typically the stable state. They also pointed out that in order
for A > y to hold, one typically would need to look at linear
laser cavities of length L < 100 pum.

Fu and Haken did not justify the requirement x < y, in
their work and we find that through comparison with FDTD
simulations the STA and SALT work well even when « > y
(“bad cavity” limit). In the latter case the polarization cannot
be adiabatically eliminated and does not follow the electric
field instantaneously until steady state is reached; but in the
steady state the SIA holds and the lasing fields are accurately
determined by SALT. « itself is not a relevant frequency scale
for the validity of the SIA in the laser without injection; as
long as y; < y1,A the SIA, and hence SALT, will describe
the steady-state. As noted above, the relaxation oscillation
frequency, , ~ /K, can be relevant if it coincides with beat
frequency of nearby modes, i.e., itis ~A, so that relaxing fluc-
tuations could be resonantly enhanced and destabilize the mul-
timode state. However, since « < A, o, < /Ay < A,yL
(we assume that in the interesting cases y; > A; otherwise
multimode lasing is unlikely, since y, is the width of the gain
curve). So for steady-state multimode lasing without injection
all that is required for our free-running theory to work is
Vi < v A.

For the injected laser the inversion beat frequency is not
A, but the frequency difference between the injected signal
win and the free-running signal w; (we assume here only one
free-running mode and one injected signal for simplicity).
For the generalization to I-SALT to work in the unlocked
regime, where there are two beating signals, we must have
win — w1 > w,. However, even if this is not the case, I-SALT
will still describe quantitatively the locked regime and predict
the unlocking threshold exactly.

In the cases studied below, in which I-SALT describes
both the locked and the unlocked behaviors, we find an effect
in 1D Fabry-Perot-type cavities: Instead of the free-running
frequency being “pulled in” to the injected frequency, as in the
standard Adler picture [5], we find that the lasing frequency is
repelled from the injected signal frequency due to the effects
of gain competition and spatial hole burning. In Oppo et al.
frequency repulsion is also found in a certain limit, but it is due
to the dynamical effects of relaxation oscillations which are
absent for the cases we consider and thus is a distinct effect.
Moreover, essentially all of the injection literature treats single-
mode one-dimensional cavities. I-SALT naturally allows the
description of multimode lasing with injection, leading to the
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possibility of a partially locked lasing state, in which one or
more modes have been quenched by cross saturation, while
other modes still lase, as we demonstrate below. Also, I-SALT
provides a formulation for describing injection into a cavity
with arbitrary two- or three-dimensional geometry; we apply
the method to injection into a two-dimensional chaotic cavity
laser below.

The outline of this paper is as follows. In Sec. III we derive
I-SALT using a convenient basis in which to express the prob-
lem, which also facilitates its solution numerically. In Sec. IV
we derive a version of the Adler steady-state theory from
I-SALT, valid for relatively high-Q cavities. In Sec. V we
present numerical results comparing I-SALT to direct integra-
tion of the Maxwell-Bloch equations in time and demonstrate
excellent agreement in the regime of relatively low-Q cavities
where we expect other approaches to fail. This section also
demonstrates the frequency repulsion of the lasing mode from
the injected mode, in contrast to predictions of previous theo-
ries. We also present here a comparison between the I-SALT
version of the Adler equation in the locked regime and full I-
SALT for higher Q cavities. Finally, we present an application
of I-SALT to injection locking in two-dimensional cavities. In
Sec. VI we summarize and make some concluding remarks.

III. DERIVATION OF I-SALT

As introduced above, SALT was formulated to determine
directly the steady state of the laser rate equations for an
N-level atomic gain medium coupled to Maxwell’s equations
within an arbitrary cavity specified by its passive dielectric
function, a tensor in general, £.(x), and subject to a spatially
varying pump, Dy(X) = dy F(x), without performing time inte-
gration to steady state. Assuming stationary level populations
(stationary inversion for the two-level medium), a multimode
steady state exists and is described by a set of time-independent
wave equations coupled through their nonlinear saturation
terms and subject to the non-Hermitian boundary condition
of purely outgoing solutions at the lasing frequencies. The
SALT equations are solved efficiently by introducing a specific
self-orthogonal basis set of TCF states in which to expand the
solutions and then iteratively solving the resulting nonlinear
matrix equation for both fields and frequencies. We now show
how this approach can be generalized to yield I-SALT.

The Maxwell-Bloch equations, which describe the coupling
of the electric field to a population of two-level gain atoms [7],

4737Pt = H(V x V x ET) — £.(x)0°E* (1)
0P = ~(r1 +i0)P* + EDE g @)

2
D = —y[D —doF(x)] — E[E+ S(PH) — (ET)*- P,
3)

form the basis for SALT. In these equations ET and P* are
the positive frequency components of the electric field and
atomic polarization, respectively, w, is the atomic transition
frequency, and g = e(e|X|g) is the dipole matrix element in
which |e) and |g) are the excited and ground spatial states
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of the electron wave functions. In separating the electric field
into its positive and negative frequency components, terms
oscillating at twice the atomic frequency have been omit-
ted, corresponding to the usual rotating-wave approximation
(RWA). Note that we have not introduced the slowly varying
envelope approximation for the electric field as is usually
done; this is unnecessary for the steady-state and provides
no computational advantage. As noted above, it has been
previously demonstrated that any N-level atomic medium with
a single lasing transition in the steady state can be reduced to
an effective two-level atomic system of the type considered
here in the steady-state limit [27]. Furthermore, SALT has also
been shown to describe more complex gain media (C-SALT),
which have multiple lasing transitions and diffusion of the
gain atoms [30], as long as the SIA still holds. However, for
simplicity, in this paper we focus only on the Maxwell-Bloch
equations as written above.

As discussed above, we assume the existence of a steady
state with stationary level populations, which in general
requires that yy,w, < dw,A,y|, where dw is the detuning of
the injected signal from the free-running laser frequency and
w,,A,y, are as previously defined. However, for a cavity with
only a single operating mode, either injected or free-running,
this inequality is not necessary, and the I-SALT solution
is exact (in the RWA). In general, the positive frequency
components of the electric field and atomic polarization inside
the cavity for a given pump value, dy, take the form

Ny Ny
Ef(x6) =) W,xe " + Y Wux)e ', (4
" o

N Ny
PHx) =) pu(®e "+ pa(x)e !, (5)
" o

where the N, lasing modes, W, (x), and associated polarization
fields, p,,(x), have unknown spatial variation, and unknown
frequencies, w,,, and there are N4 amplified signals injected
into the cavity, at given frequencies, w,, and given incoming
amplitudes, By, but with unknown overall amplitude, spatial
variation, W, (x), and polarization, p,(x), within the cavity.
All of the unknown quantities are determined from the
resulting I-SALT equations and their boundary conditions
self-consistently. We now insert the multiperiodic ansatz (4)
and (5) into the Maxwell-Bloch equations and apply the SIA

to write
g D(x)
pa(x) = 7 N
h Wy — Wy + yL

[Wo(x) - gl (6)

where o is either a free-running or an injected mode. This
allows for the elimination of the polarization and atomic
inversion, leading to N, + N, coupled nonlinear wave equa-
tions, which can be written as three-dimensional vectorial
equations, but which here we only consider in their scalar
form, appropriate for the geometries

y1D(x)

Wy —wa +iyL
doF(x)

L N T W, (02 + 0 Do We ()2

{V2 + |:£E(x) + } ki} Yo (x) =0, (7)

D(x) = ()
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where I'y = y?/[(w, — w,)* + y?1is the gain curve and k, =
w, /c is the wave vector. The electric field and inversion have
also been scaled to natural units, E. = 2g/h,/yy1 and D, =
47 g% /y, h%. The wave equations for lasing modes, W, (x), are
to be solved with purely outgoing boundary conditions, while
those for amplified modes, W, (x), are to be solved with the
boundary condition of fixed input amplitude B, at w,.

We solve these coupled equations by nonlinear iteration
after expanding the solutions in a non-Hermitian basis set with
the appropriate boundary conditions. For the lasing modes, ¥,
this set is the same TCF states used in SALT, which satisfy

(V2 + [ec(x) + 0y FO)ku, (x; 0) = 0, )
axun(-x;w)|x:L = ikun(L;w)9 (10)
1, (0; ) = 0, (11)

where we refer to u, (x; w) and n,(w) as the TCF eigenvectors
and eigenvalues, respectively, and we have written the outgo-
ing boundary condition explicitly for a one-sided cavity with
a perfect mirror at the origin of the type we study below. The
general outgoing boundary condition is expressed differently
for different geometries, but is well known. Note that {5, (w)}
is generically complex and can be thought of as the set of
values of the gain medium susceptibility which lead to lasing
at frequency w, i.e., for which a solution for purely outgoing
real wave vector exists [31]. In this basis the lasing mode is
written as

Wu(x) =) aPu,(x; ). (12)

Thus, the lasing thresholds in the absence of input signals are
obtained by varying w in the TCF equation until a frequency,
w,,, is found at which

doyL

_ 13
wu,_wa_"iyl ( )

Nn (wu) =
The {u,(x;w,)} then form an efficient basis set for finding
the nonlinear solutions above threshold because at the first
lasing threshold, the lasing mode is only a single TCF state,
and above threshold only a small number of TCFs are needed
to converge to the nonlinear solution of the SALT equations.
The amplified modes, W,, however, must be treated
differently from the lasing modes since they have a fixed
incoming signal amplitude and fixed frequency. To represent
these modes we require terms with an incoming component
in addition to the outgoing TCF expansion terms, which we
do conveniently by solving the same TCF equation inside the
cavity with a purely incoming boundary condition,

“pa(x) =

n

a iy (o 00) + Y b vn(xs0,),  (14)
where the states v,,(x; w) and associated eigenvalues ,, are
given by
(V2 + [6c(x) + Bu F )k}, (x; ) = 0, (15)
a)cvm(X;a))Lr:L = _ikvm(L; w)’ (16)
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U (0; @) = 0, a7

and thus represent states that are purely incoming. The
incoming and outgoing TCF states are not power orthogonal,
but they do satisfy a self-orthogonality condition between
themselves,

1 / A F ()t (63 @)t (53 0) = Sy, (18)
L Jc

l/ dx F(x)v,(x; @)y (x; 0) = Spm, (19)
LJc

which can be derived from the definitions of the states and
Green’s theorem. Either the incoming or the outgoing TCF
states represent a complete basis for fields within the cavity at
gy, but the incoming terms are needed to represent the input
boundary condition. Because they are purely incoming, they do
not contribute directly to the emitted fields, but they correctly
represent the full spatial hole-burning and gain competition
effects of the amplified input.

For amplified modes, we can easily write the incoming
boundary condition for a one-sided slab cavity of length L as

Be el = " be0v,, (L; ), (20)

where B, is the given incoming field amplitude at frequency
wy. This single equation vastly underdetermines the coef-
ficients @ in the sum, so that the choice is based on
convenience. This freedom arises from the overcompleteness
of using both {u,} and {v,,} to represent the internal fields.
Hence, the coefficients a® depend strongly on the choice
of the b®. A natural choice is to take only a single term,
vo(x; wy), which corresponds to the dominant component of
the outgoing TCF state for the nearest lasing mode. This
is allowed for a cavity with a single input channel, as in
the one-sided slab geometry we are considering here; in
general, one needs a minimum of M independent incoming
states to represent an arbitrary input for an M-channel
cavity, and these can be chosen again to be similar in
character to the nearest lasing mode in order to optimize the
calculation.

Once a representation of the input field is chosen, one can
insert the expansions (14) for the amplified modes and (12)
for the lasing modes into the fundamental Egs. (7) and (8) and
use the self-orthogonality relations of the outgoing TCF states
to find coupled nonlinear matrix equations for the coefficients
a, a'® which determine their solutions. For the lasing modes,
W,,, one finds

may” =3 Tal, Q1)

n

Tli”) _ Yudo / FOu (s o,)u, (x5 w,,) 22)
C

L 14+ YNNI, (02

where y, =y /(w, — w, +iy1). This is identical to the
lasing equations of SALT except for the presence of the
amplified mode intensities in the nonlinear hole-burning
denominator.

In a similar manner the coupled equations for the amplified
modes can be determined, and they take the form
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may” =3 e + 3 (Wi + V)b, 23)
m

W(a) _ yadOf X F)ui(x; 0 v, (x; 0y)
"L e T 1 T [ ()

Ve = ﬂf’” / dx F ()11 (X 0 )0 (X 4. (24)
C

The result for the overlap integral can be simplified further
through the use of the definitions of the incoming and outgoing
TCF states and Green’s theorem, allowing one to write

yo_ 2 Pn
fm Lkg B —mi

As with any basis expansion method, this method of represent-
ing the original differential equations will require truncation
of the sums at a finite number of TCFs, N, in the numerical
implementation.

From this form of the overlap integral, it is simple to
understand why the most numerically efficient choice of
incoming TCF states to use, '@ # 0, are those related to
the outgoing states of the nearest lasing mode. In the case of
a lossless cavity, e.(x) € R, the incoming and outgoing TCF
states form a biorthogonal set, with g, = n}, and v, = u},.
Thus, V;,, is maximized when the difference between the
incoming and outgoing TCF eigenvalues is minimized. This
choice allows the outgoing states required by 7j, to also have
significant overlap with the incoming states chosen, rather
than needing to include additional outgoing states to properly
compute the sum over overlap integrals.

The I-SALT equations for free-running modes (21) and (22)
have a critical difference from the equations for amplified
modes (23)—(25): In the former, there is an undetermined
global phase, whereas for the latter the phase is set by the
injected signal, B, . For lasing modes the undetermined global
phase is chosen by convention (gauge condition) [31,32].
This leaves 2N — 1 expansion coefficients to fully determine
the real and imaginary parts of al”, and one additional
equation which determines the unknown lasing frequency. It
is this equation which determines the full intensity-dependent
line-pulling effects on the lasing frequencies, and, in the case of
I-SALT, frequency pulling or pushing due to the injected mode.
In contrast, for the amplified mode the frequency and phase of
the input signal is fixed externally and uniquely determines all
other phases (there is no global phase invariance); thus, there
are 2N expansion coefficients (the real and imaginary parts of
a®) that must be found, and an equal number of conditions
determining them.

Together Egs. (21)—(25) define I-SALT. In the regime in
which the SIA holds, they provide essentially exact solutions of
the full coupled wave equations for amplification and injection
locking. The method is ab initio, as in SALT, with no prior
assumptions about the number, spatial form or frequencies of
the lasing modes. Lasing modes correspond to poles of the
nonlinear scattering matrix on the real axis. Amplified inputs
do not; they are simply additional scattered waves which also
deplete the gain. If the input signal becomes too strong, and
is sufficiently near in frequency to the lasing mode, then the
lasing mode has insufficient gain and falls below threshold,
leaving only the amplified signal output. The output is “locked”

uj(L; wg )um (L; 0y ). (25)
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to the input frequency, but not by pulling the lasing mode over
to w,, but rather by turning it off.

IV. FROM I-SALT TO ADLER’S MODEL

In this section we show how I-SALT can recover an
improved version of the traditional Adler equations in their
steady-state form. Because our approach starts from the full
laser equations we use as comparison Egs. (58) and (59) from
Spencer and Lamb [4], which has a similar starting point
(i.e., starts with the full Maxwell equations and includes the
spatial degrees of freedom and gain saturation explicitly). The
Adler theory assumes only a single input channel with small
amplitude and only, at most, a single free-running mode and a
single amplified mode; we model the injected laser following
Spencer and Lamb via a cavity with a perfect mirror at one
end and a high-reflectivity mirror at the other. I-SALT is
a steady-state theory and should only approach the Adler
description in the locked regime; thus, we assume that only
a single, highly amplified mode is present in the cavity. This
allows us to approximate the field inside the cavity as only
having two components, one incoming TCF and one outgoing
TCF (instead of the full expansion in outgoing TCFs),

Win(x) = au(x; win) + bv(x; i), (26)

with a > b and where wj, is the frequency of the incident
signal. In a single-channel cavity the use of a single incoming
TCF is always justified and in a high-Q cavity the use
of a single outgoing TCF is justified by the single pole
approximation (SPA) [31], as the amplified signal is close
to a high-Q cavity resonance and thus only a single outgoing
TCF is needed to describe the amplified mode in this limit. We
can use Eqs. (9) and (15) to rewrite Eq. (7) as
y1D(x)

————————— (%) = aninu(x) + bBinv(x), 27

Win — Wy + 1y

Dy
1+ Finl“yin(x)|2 .

By adding and subtracting bni,v(x) from the right side of the
equation and defining Wi, (x) = ay(x), we are able to write

Y1 D(x)
Win — Wy + lyL

D(x) = (28)

ay(x) — anin¥ (x) = b(Bin — Nin)v(x).
(29)

While Spencer and Lamb used a §-function index jump to
represent the imperfect mirror, for convenience we take our
cavity to have a uniform index with the index step at one end
to vacuum, comprising the mirror; hence, the TCF states will
be sine functions of a complex argument. Thus, in this section
only, we choose to normalize our incoming and outgoing
TCF states for convenience as (2/L) f dxu(x)u(x) =1 and
similarly (2/L) [ dxv(x)v(x) = 1. Integrating through with
respect to the mode describing the resonance of the cavity,
2/L) f dxu(x), we define the gain saturation function as

_onDo (2 [ o wu)
=== (L)/dx1+rml|w<x>|2’

where I ~ |a|? is a measure of the intensity of the field inside
of the cavity, and has essentially the same meaning as the

(30)
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similar quantity introduced in Spencer and Lamb (in their case
they use a sine of real argument and are able to evaluate the
resulting integral analytically) [4]. Although f(/) is complex
in general, for high-Q cavities, it is essentially real to 1073,
and thus here we approximate it as such. Next, we note that up
to corrections of order b/a, (2/L)fu(x)1/f(x)dx =1 as the
field profile inside of the cavity is dominated by the outgoing
portion. Finally, the overlap integral between the incoming
and outgoing TCF states can be evaluated by use of Eq. (25),
resulting in

yof) <2i> 4 — nna = 2ic <%) u(0)Bi,,

Win — g + iYL \ @i Win
(€1))

where the mirrored side of the cavity has been placed at x =
— L and the open edge of the cavity at x = 0 and noting that the
definition of the input signal amplitude, Eq. (20), can be used
to simplify Bj, = bv(0). The outgoing TCF eigenvalue for a
dielectric slab cavity can be expressed in terms of the input
frequency and the cavity resonance, following Ge et al. [31],

c Ve \2
S (£S5 2

2
Wiy

e, [M 2 (&)} , (32)

Win Win 2

where o is the frequency of the passive cavity resonance, y,
is the photon decay rate through the end of the cavity, and
W)y = wiy, as the resonance corresponds to the closest passive
cavity resonance to the injected frequency, at most half a free
spectral range away. Finally, we approximate (wj, — w,)*> ~ 0,
resulting in
. Ve 2ic
& —i) f(Ia (A i ) =i
where £ = (v, — w,)/y1 and A = wy — wj,. In high-Q cav-
ities with the normalization for the outgoing TCFs chosen in
this section, it can be shown that u(0) >~ 1. The cavity decay
rate can also be related to the round trip time in the cavity and
the reflection coefficient [5],

u(0)Bin,  (33)

—c
Y. = — In R, (34)

2Ln
where 7 is the index of refraction of the passive cavity. Finally,
to connect to the Spencer and Lamb version of the Adler theory,
we formally expand the reflection coefficient for large index,
approximating the coefficient, — In R & T & 4/n, resulting in

2c

x> . 35
1Z Le. (35)

Finally, writing Bj, = | Bjn|e’? and separating real and imagi-
nary components, we find

0=[rir—E]a=rviBulcosr. (6

_ |Bin|
0=¢6f(D)—A—V. P

Noting that in the locked regime @ = wi,, Eqs. (36) and (37)
are identical to the steady-state Adler equations as presented in

sin(¢). (37)
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Egs. (58) and (59) from Spencer and Lamb [4], except that our
definition of f(/) includes the openness of the cavity through
different boundary condition on the TCF state, leading to a
sine function of complex argument, instead of the Dirichlet
boundary condition assumed in [4].

Thus, in the correct limit, an improved version of the
traditional theory can be recovered from I-SALT, in the locked
regime. If we make the further usual assumption that £ is small,
we obtain exactly the same locking range as predicted by the
standard theory (see next section). In the unlocked regime the
Adler theory predicts a residual time dependence of the relative
phase of input and free-running signal which cannot be derived
from I-SALT; but full I-SALT shows that the frequency shifts
predicted by the usual theory in the unlocked regime are not
correct in general (next section).

V. NUMERICAL RESULTS

To test the results of I-SALT, we compare them to the
exact numerical solutions from FDTD simulations of the
Maxwell-Bloch equations for a simple one-dimensional asym-
metric Fabry-Perot cavity with an injected signal (schematics)
under various conditions. The FDTD simulations performed
here used the time-stepping method proposed by Bidégaray,
updating the atomic polarization and inversion alongside the
magnetic field and were run for a total time of Ti; ~ 100(1/y)
to ensure convergence, as )| corresponds to the longest time
scale in the system [33]. Similar simulations without the
injected signal were previously used for quantitative tests of
SALT [27,34].

A. locking transition

We first study the usual locking transition in Fig. 1 in
which a single free-running mode eventually gives way to an
injected mode. The simulations are done in a region of large
detuning in which we expect good agreement with I-SALT.
Indeed locking of the output signal to the input is found in
the FDTD data in good quantitative agreement with I-SALT
with no adjustable parameters. We note that the quantitative
agreement seen between I[-SALT and FDTD calculations is
also a demonstration of the stability of the I-SALT solutions;
any instabilities due to beating terms in the inversion would be
present in the FDTD solutions, which do not rely on the SIA.
A further analytical treatment of the stability of the I-SALT
solutions is presented in the Appendix. The simulations in
Fig. 1 are for large detuning, not the typical Adler regime; thus,
for these parameters locking requires an input signal which is
a significant fraction of the free-running output at that pump
value, ~23%. The total output intensity of the amplified mode
when locking occurs is larger than the free-running signal
also by ~18% (in the Adler theory they are the same to a
good approximation); however, this is not surprising due to the
relatively large input intensity. Also, the independence of the
spatial degrees of freedom of the amplified and free-running
mode should allow the amplifier to extract more power from
the gain medium. Consistent with this, in the unlocked region,
when both free-running and amplified modes are emitting, the
total output intensity is monotonically increasing, as indicated
by the black dashed line in the figure. If we take the I-SALT
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FIG. 1. (Color online) (Top) Simulations of single-mode injec-
tion locking in a one-sided dielectric slab cavity with n = 1.5
(schematic) with a perfect mirror at one end and an index step to
vacuum at the other. First, the pump is increased above the threshold
for lasing at w e = 40.714, Dy = 0.0603 to Dy = 0.08, and then
held at a fixed value (vertical black line) while the input signal
amplitude is ramped from Bij, =0 until the free-running signal
is quenched and the system “locks” (vertical orange line) to the
injected frequency, w;, = 40.4 at B;, = 0.176. Finally, the simulation
is continued in the locked regime to B;, = 0.4. Solid lines are output
intensities calculated from I-SALT; blue is lasing output, red is
amplified output at signal frequency, dot-dashed black is total output.
Triangles are the same quantities from FDTD for the same dielectric
slab laser with w, = 40, the width of the gain curve, y, =4, and
v) = 0.001. The green curve in the locked regime is the prediction of
our generalized Adler equations, (36) and (37). The top inset shows
gain curve and wj, (red), w; (blue). (Bottom) Frequency variation of
the first lasing mode. Tlue line is from I-SALT and blue triangles
from FDTD. The green line shows the prediction of the Adler theory.
The red line is the injected signal frequency. Again, the orange dashed
line shows the locking threshold from I-SALT; frequencies beyond
this point are taken as the real part of the location of the pole of the
scattering matrix. As the locking transition is approached, the lasing
frequency moves away from the injected frequency, due to spatial
hole burning instead of being attracted toward it, as expected from the
Adler equation [5]. Blue dashed lines showing negligible frequency
shift are I-SALT calculation with uniform gain saturation and no
spatial hole burning. The inset shows a plot of the phase shift between
input and output signals of an injection-locked dielectric slab cavity
at a fixed input intensity. I-SALT (red curve) and FDTD simulations
(red triangles) are seen to have a better quantitative and qualitative
agreement than the Adler prediction (green curve). For comparison
with the Adler theory, the horizontal axis is plotted in terms of the
free-running lasing frequency in the absence of an injected signal at
threshold, o) .. Frequencies and rates are given in units of c¢/L,
while the atomic inversion and modal intensities are given in SALT
units of E. and D,.
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version of the Adler equations in the locked regime and impose
the condition that locking occurs when the amplified output
is equal to the original free-running output, we can solve the
nonlinear Eqgs. (36) and (37) to predict the input amplitude
at which the laser would lock. This transition line is very
close to that found by I-SALT, slightly less by ~4.5%. Above
that point we can plot the Adler I-SALT predictions for the
amplified mode intensity and find them to be in reasonable
agreement with I-SALT and FDTD near the transition and in
poor agreement far above it.

The difference between the locking behavior in this regime
and in the usual Adler theory is strikingly illustrated by the
frequency shift of the free-running mode prior to locking,
which is qualitatively different from the Adler theory; the free-
running frequency, w, is repelled from the input frequency
(full blue line and data points), instead of being strongly
attracted toward it (green line). This frequency repulsion can
be explained by the combined effects of mode competition
and spatial hole burning. As the incident signal is imposed
and depletes the gain, the standing wave of the laser field
shifts away from the frequency/wavelength of the incident
standing wave in order to better extract energy from the regions
of the cavity where the gain is not being saturated by the
incident signal. To confirm this interpretation we replaced the
space-dependent gain saturation denominator with its spatial
average,

do

; (38)
L Y e [ W (x)2dx

Dave(x) =

in place of Eq. (8), and noting that for this simulation the pump
profile is uniform, F(x) = 1. Using this spatially averaged
gain saturation, no movement of the lasing frequency is seen in
Fig. 1(b) (dashed blue line). This provides strong evidence that
the frequency pushing phenomenon observed here requires
treating the full spatial dependence of the problem and can not
be seen in previously developed spatially averaged injection
theories [12-14].

Furthermore, as I-SALT and FDTD simulations both
predict this same frequency repulsion and this solution is
found to be stable (see the Appendix), the effect seen here
is different from the frequency repulsion previously predicted
in dynamical parameter regimes by Oppo et al., where
the SIA would not be appropriate and as a result more
complex dynamical features are found [12]. The relatively
weak repulsion found here is also distinct from that observed
by Murakami et al. [35], which is a shift in the cavity
resonance due to the injected signal saturating the gain carriers
in materials with large Henry «-factors such as semiconductors
where @ ~ 2-8. In contrast, for the Bloch gain medium used
in Fig. 1, ¢ = 0.17. Additionally, the overall saturation of
the gain medium is not changing significantly while this
frequency repulsion is observed as the pump is held fixed
while the injected signal is increased, thus keeping the total
output intensity relatively constant, as is seen in Fig. 1(a) in the
black dot-dashed line. For the effect predicted by Murakami
et al. to be seen, a significant shift in the number of available
gain carriers is needed, coupled to a large Henry «-factor, and
this effect would be seen in the spatially averaged I-SALT
calculation if it were present [35].
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As noted, the Adler theory describes locking driven by
phase synchronization of the input and free-running fields.
Since the threshold input intensity for locking decreases to
zero as the input frequency, wj,, approaches the free-running
frequency in the absence of an injected signal, @ free, the
threshold condition can be expressed as a “locking range,” the
frequency range Awjocx over which the laser is locked for a
given input intensity. In the Adler theory one finds

|Bin|2
I

Awipeck = Ve , (39)

where y. is the cavity decay rate, | Bj,|? is the intensity of the
input signal, and I is the intensity of the free-running lasing
signal in the absence of the input [5]. Within this locking range
there is a fixed phase relationship between the input signal and

the locked output which varies as

(40)

. | @1,free — Win
A¢ = arcsm[—:| .

Wiock

The same quantity can be calculated in I-SALT and is
compared to the Adler prediction for the same slab cavity
in the inset of Fig. 1(a). The phase shift variation found from
I-SALT is substantially different from the Adler prediction and
in good agreement with FDTD [see inset, Fig. 1(b)].

The fact that in this regime the locking transition is entirely
due to gain cross saturation, with no contribution from beating
or phase synchronization, is illustrated in Fig. 2(a). In the
top panel we show the motion of the pole of the scattering
matrix corresponding to the lasing mode in Fig. 1 as the pump
is increased and then fixed, and then the signal is injected
and increased. The dashed blue line corresponds to the laser
being below threshold; as the pole moves up towards the real
axis its real frequency, w;, decreases, pulled toward the center
of the atomic line, w,. When the pole reaches the real axis,
corresponding to the free-running threshold, w; fre, the gain
balances loss and the mode lases. As the pump is further
increased, the pole moves slightly further toward the center
of the gain curve (not visible on this scale), but as soon
as the pump is fixed and the injected signal is turned on
at wij, < wi, the behavior reverses. As the injected signal
increases, the lasing frequency increases, shifting away from
win (and w,). Eventually the injected mode saturates the gain
enough to drive the lasing mode below threshold, and the
pole leaves the real axis, although it continues to be repelled
from wj,. This demonstrates that in the regime of stationary
atomic populations the locking transition corresponds simply
to driving the lasing mode below threshold due to the saturation
of the gain medium from the injected mode.

A final important indication of the non-Adler nature of
the transition is given in Fig. 2(b). In the Adler theory there
are always strong four-wave mixing effects as the locking
threshold is reached [5], and additional lines should appear
in the frequency spectrum. In Fig. 2(b) we show the Fourier
transforms of the FDTD data across the locking transition,
which indicated a smooth transfer of intensity from the free-
running line to the injected line with no additional frequencies
appearing as the free-running line disappears.
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FIG. 2. (Color online) (a) Motion of the pole as described in the
text corresponding to the free-running lasing mode in the locking
scenario of Fig. 1. As the pump is increased below threshold the
pole of the scattering matrix is pulled upwards towards the real
axis and “in” towards w, = 40 (blue dashed line, recall there is no
signal yet at w;, = 40.4). Free-running lasing occurs when the pole
reaches the real axis at o free = 40.714 and continues as the pump is
increased further above threshold with negligible further frequency
shift. Then the pump is fixed and the input signal is ramped, causing
the pole (solid blue line) to move to higher frequency, away from
the input frequency, and eventually off the real axis as the effects
of gain saturation cause the lasing mode to go below threshold. The
inset shows a magnification on the motion of the pole of the lasing
mode inside the dotted box. (b) Frequency spectrum from FDTD
simulations across the locking transition, showing no additional lines
appearing, indicating that the effect is purely due to gain cross
saturation. Frequencies and rates are given in units of ¢/L, while
the atomic inversion and modal intensities are given in SALT units
of E. and D..

B. Partially locked states

Beyond yielding a correct and quantitative treatment of
the locking transition of a single-mode laser in the relevant
regime, as seen from the generality of Egs. (21)—(25), I-SALT
is able to treat simultaneously multimode lasing with multiple
inputs. An interesting example is shown in Fig. 3. Here an
asymmetric Fabry-Perot slab laser similar to that in studied in
Fig. 1 is pumped above the threshold for its second lasing mode
(not to be confused with the instability threshold sometimes
called the second lasing threshold [7]) and a signal is injected
closer to the frequency of the first lasing mode. Because of its
stronger interaction with the first mode (blue line), the signal
is able to lock that mode, while the second mode (cyan line)
remains active at a similar frequency to its free-running value,
though shifted away from the injected frequency in the same
manner as described before. As before, the solid lines (I-SALT)
are in good agreement with the data points (FDTD). Thus,
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FIG. 3. (Color online) Partial locking transition as described in
the text for a laser with two free-running modes and an injected signal
(schematic) using a similar pumping and input ramping scheme as
Fig. 1, starting at the first lasing threshold Dy = 0.101 and pumping
until Dy = 0.13, then increasing the input signal from B;, = 0 to
B;, = 0.4. Solid lines are output intensities calculated from I-SALT;
blue and cyan lines are lasing output, the red line is amplified output
at signal frequency, w;, = 20.3, the dot-dashed black line is total
output. Triangles are the same quantities from FDTD for a similar
dielectric slab laser with n = 3, w, = 20.5,y, = 3,y = 0.001. The
inset shows the relationship of the three frequencies. As expected,
the lasing mode nearest to the injected signal locks to the injected
signal (orange line), then the more distant lasing mode locks (purple
line). Frequencies and rates are given in units of ¢/L, while the
atomic inversion and modal intensities are given in SALT units of E,
and D..

with relatively little additional computational effort, I-SALT
predicts such “partially locked” states.

C. I-SALT and Adler I-SALT below threshold

The previous results assumed rather large detuning and
hence relatively large injected signals to reach locking. To test
our work in the more conventional regime of small detuning
and small injected signals we consider injection near the free-
running lasing frequency as a function of pump. Here we are
near the center of the gain spectrum and will have much higher
amplification. Since I-SALT is not reliable in the unlocked
regime for detuning smaller than the relaxation oscillation
frequency, we study only the behavior for pump values below
the lasing threshold, when the cavity is functioning as a
regenerative amplifier for the injected signal. Since there is
only emission at the injected signal in this regime, we can
also apply the Adler approximation to I-SALT. As shown in
Fig. 4, even though I-SALT may not describe well the unlocked
regime for this cavity, it provides a very accurate description of
the amplifier, in good agreement with FDTD for both intensity
and phase offset. We also find, as one might expect, that the
Adler approximation to I-SALT (red curves) works almost as
well. The dashed vertical lines in the figure show the lasing
thresholds in the absence of the injected signal (orange) and
in its presence (purple). In the presence of the injected signal,
the first lasing threshold is synonymous with the unlocking
transition, as this is when the cavity will begin to self-oscillate.
Note that the injected signal pushes up the lasing threshold
significantly.
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FIG. 4. (Color online) Comparison of the predictions of I-SALT
(blue line), the SPA of I-SALT, given by Eqgs. (27) and (28) (green
line), the Adler model, as given by Eqgs. (36) and (37) (red line),
and FDTD (blue triangles) for both the output intensity (top) and the
phase offset (bottom). The input intensity is negligible (| Bj,|> = 10~*
in normalized SALT units) compared to the output, while the pump
(gain) is increased from Dy =0 to Dy = 0.067, thus placing the
simulations in the regime of validity for the Adler approximations.
The vertical orange dashed line denotes the first lasing threshold
in the absence of an incident signal, whereas the vertical purple
dashed line shows where I-SALT predicts the unlocking transition
to occur. Simulations are shown for a single-sided dielectric slab
cavity with n = 1.5, w, = 40, vy, = 40.7, ©| free = 40.714, y, = 4,
and y; = 0.001. Frequencies and rates are given in units of ¢ /L, while
the atomic inversion and modal intensities are given in SALT units
of E. and D..

D. Injected quadrupole resonators

As noted in our Introduction, a strength of the SALT
and I-SALT theories is that they can handle an arbitrary
cavity geometry essentially exactly. Here we demonstrate the
power of the method by simulating injected two-dimensional
quadrupole resonators, below the first lasing threshold. The
boundary of the quadrupole cavity is defined by

R(¢) = Ro[l + € cos(2¢)], 41

where ¢ is the polar angle, Ry is the average radius, and € is
the deformation parameter. Disk or cylinder resonators of this
type have been of interest for some time [36,37] because as
a function of the deformation the ray dynamics in the cavity
undergoes a transition to chaos, with an attendant change in
the emission patterns from the laser modes. For thin disks
in three dimensions, strictly speaking, one should treat the
diffraction effects in the axial (z) direction; for cylinders many
wavelengths long one may treat them as infinite in the z
direction and study the k, = 0 mode, which then reduces to this
purely two-dimensional scalar problem for either the electric
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(TM) or the magnetic (TE) modes. It is slightly simpler to
treat the TM case for which the electric field is continuous
at the boundary and we will focus on that case here. Both
SALT and I-SALT are capable of treating modes of arbitrary
polarization [28]. In two dimensions, the boundary condition
for the incoming and outgoing TCF states requires matching
via continuity from the interior cavity solutions to exterior
solutions consisting of a superposition of either incoming or
outgoing Hankel functions. The detailed method for doing this
has been previously described [38,39], and for brevity we omit
it here. As mentioned above, the injection profile must now be
defined at the border of the entire two-dimensional cavity,
which must then be matched to an expansion of the incoming
TCEF states along this boundary.

Unlike the simple injection boundary condition in a single
dimension, Eq. (20), in two dimensions there is an infinite
variety of injected fields at the boundary and we find that the
choice of the injection profile plays a large role in determining
the resulting amplified mode profile, as seen in Fig. 5. Here
the cavity is injected with three different injection profiles,
all at the first lasing mode’s free-running frequency. The first
lasing threshold in the absence of injection is shown as the
orange dashed line and its corresponding mode profile is shown
below. When the injected signal is given by the incoming
TCF corresponding to the first lasing mode at threshold, the
injected signal is amplified dramatically, and the resulting
mode profile is nearly identical to that of the threshold lasing
mode. However, when the injected signal, still at the same
frequency, is chosen to be the incoming TCF corresponding to
the second lasing mode, substantially less amplification occurs
and the resulting mode profile is very similar to that of the
second lasing mode at threshold, even though the difference
in frequency between the first and second lasing modes is
small compared with the linewidth of the atomic transition,
and they have similar thresholds. Finally, when the incoming
signal is represented by the incoming TCF state corresponding
to the third lasing mode, almost no amplification occurs, and
the mode profile does not resemble the third lasing mode.
Evidently, the injected mode profile plays a much stronger
role in choosing the resulting amplified mode than the injected
frequency does. Essentially, the injected profile is playing the
role of a coherent pump or seed with a strong selectivity for a
given resonance, so that we may think of it as interchanging the
thresholds for, e.g., the first and second modes. This qualitative
conclusion may have been difficult to guess in the absence of
a quantitative theory.

VI. CONCLUSION

In this work we have developed a method of treating the
steady-state behavior of a laser with injected signals which
gives an exact treatment of both the openness of the cavity
and the effects of spatial hole burning. The theory is valid for
Class A and B lasers as long as y; and the relaxation oscillation
frequency are sufficiently small compared to the other relevant
frequency scales, as discussed in the Introduction. These
conditions are typically met in modern microlasers. I-SALT
was then shown to predict qualitatively different behavior
of the locking transition from previous Adler-like theories
which describe the process as one of phase synchronization.

PHYSICAL REVIEW A 90, 013840 (2014)

0.14

== First Lasing Threshold (a)

— First Lasing Mode Injected (b)
0.1} — Sccond Lasing Mode Injected ()
— Third Lasing Mode Injected (d)

0.12

0.08

0.06

0.04

Integrated Intensity

0.02

0 0.01 0.02 0.038 0.04 0.05 0.06 0.07

Pump Strength, Dg

Field Amplitude Profile

FIG. 5. (Color online) Simulations of a uniform index
quadrupole cavity laser amplifier with n = 1.5 (boundary indicated
in white). The parameters chosen are Ry = 1.72 um, A, =1 um,
y. = 0.03 um, and € = 0.16. The injected wavelength for all three
simulations is the same as the that for the first free-running mode,
Ain = A1 = 0.989 um. The pump value was increased from Dy = 0
to the first free-running lasing threshold, Dy = 0.065, vertical orange
dashed line. The three solid curves show the amplifier output for
three different injection conditions: blue, injection with the TCF
corresponding to the first lasing mode; green, injection with the
TCF corresponding to the second lasing mode; red, injection with
the TCF corresponding to the third lasing mode. Lower plots show
in color scale the normalized mode amplitude profiles: (a) The first
free-running lasing mode at threshold. (b) The amplified mode with
the first lasing mode’s incoming TCF as input. (c) The amplified
mode with the second lasing mode’s incoming TCF as input. (d) The
amplified mode with the third lasing mode’s incoming TCF as input.
The full disk shown in blue is the simulation region used; only TM
modes were simulated. The atomic inversion and modal intensities
are given in SALT units of E. and D.,.

When the atomic inversion is stationary, the locking transition
is entirely due to spatially varying gain saturation, which
has the effect of pushing the frequency of the lasing mode
away from the frequency of the injected mode, in contrast to
predictions of previous theories. I-SALT can also deal with
injection into multimode lasers and predicts partially locked
as well as the usual fully locked and free-running states. The
theory is designed to treat complex cavity geometries and can
easily incorporate different spatial injection profiles into higher
dimensional cavities.
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The accuracy and stability of the I-SALT theory was
confirmed by excellent agreement with brute force FDTD
simulations for the case of one-dimensional cavities. However,
I-SALT requires substantially less computational effort. For
example, I-SALT takes close to an hour of computational time
on modern CPUs to generate the curves seen in Fig. 3, while
FDTD requires 168 days. In general, exact FDTD studies
of multimode lasing are computationally very demanding
and could not be performed in more realistic structures,
whereas SALT has been shown to be computationally tractable
in complex two-dimensional structures such as photonic
crystals [23] and random lasers [38], and 3D vectorial codes
have been developed [28]. Since I-SALT is essentially of the
same degree of computational complexity as SALT, it can
be used to predict the effect of injecting signals into such
complex modern laser system. This opens up new possibilities
for the study of frequency control of both single and multimode
lasing and for more general investigations of injected systems.
Finally, through comparison between the Adler theory and the
approximations made upon I-SALT to rederive this theory,
it should be possible to use I-SALT to provide an excellent
ansatz to recover time-domain equations similar to those used
by previous authors [12-14] for cavities with a complex inner
structure, though some care will need to be taken as the spatial
profile of the injected signal is a very relevant parameter, as
can be seen from the simulations in Sec. V D.
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APPENDIX: STABILITY ANALYSIS

The excellent agreement found between I-SALT and FDTD
simulations in Sec. V is a good indication that the solutions
of I-SALT are stable in time. To confirm this fact, we now
perform a stability analysis of the I-SALT solutions under
two simplifying assumptions. First, we continue to make
the assumption from SALT that the beating terms of the
form exp[—i(w, — w,)t] time average to zero, where w,
and o, are the frequencies of lasing or amplified modes
in the system. Second, we only consider spatially uniform
perturbations to the lasing and amplified modes. To address
instabilities originating from the beating terms in the inversion
equation that are neglected in I-SALT, a different analysis
can be performed which is nearly identical to that presented
by Ge et al. in which the magnitude of the beating the
atomic inversion can be calculated [34]. To treat the more
general problem of spatially dependent perturbations, a more
detailed analysis is being performed by Rotter and Krimer [40].
However, in all previous treatments of stability for injected
systems of which we are aware, the slowly varying envelope
approximation (SVEA) is invoked, eliminating the spatial
degrees of freedom for those treatments as well.

Starting from the Maxwell-Bloch equations, we again insert
a modal decomposition of the electric field and polarization,
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where the amplitudes have been decomposed into their steady-
state values, E,P, and the time-dependent perturbations,
SE,SP,

EY =Y [Es + SE,()]Wy(x)e ", (A1)
Pt =3[P, 4 8P, (1)] po(x)e i,

The inversion can also be decomposed in a similar manner, but
with only the slowly varying part and no “carrier frequency,”

D(x,t) = [D + §D(t)]d(x). (A3)

(A2)

These expansions are then inserted back into the Maxwell-
Bloch equations in which we are assuming the cavity dielectric
is a constant, the steady-state behavior is removed, and second
derivatives of the perturbations are assumed to be much smaller
than the other terms, to find

47 (— w28 Py — 2iw,8Py) po(x)
=0E,(V? + 2.0 ) Vo (x) + 2ie. 0,8 E; W,y (x),  (Ad)
8Py po(x) = (iw, — iwg — Y1)8 Py po(x)

+ 4y_;'(5DEa + DSE,)d(x)¥s(x),  (A5)
l

8Dd(x) = —y||8Dd(x) + ZJTI.)/H
X [Z(Eaapj + PYSE, )W, (x)pl(x) — c.c.].

(A6)
The linearized stability equations (A4)—(A6) can be further

simplified through the use of the known steady-state solutions,

—47 W Py po(x) = Eq (V2 + .07 ) Wy (x), (A7)

Py po(x) = 1= DE,d(x) ¥, (x). (A8)
T
0=y [Dy — Dd(x)] + 2 yyi[Es P} W, (x)pi(x) — c.c.],
(A9)
which allows for the removal of the spatial profiles of the
modes. As such, the evolution of the perturbation of the

polarization (AS) can be rewritten by dividing through by
P, ps(x) and using the steady-state solution (A8) to find

§P, iy. <5Pg SE, 51))

(A10)

P Vo

P, E, D
To simplify the perturbations in the wave equation (A4),
one can first evaluate the derivative of the spatial mode profile
through the use of the steady-state solution of the wave
equation (A7). Next, (A8) is used to rewrite the remaining
spatial dependence in terms of the inversion, and finally we
integrate both sides with respect to 1/V [, c d“x, resulting in

—2ie, SE, . SP, sP, SE,
—_— r—— - l — = a)a- _— — )
Yo {Dd(x)) \ Es Py Py Es

(Al1)

013840-11



ALEXANDER CERJAN AND A. DOUGLAS STONE

TABLE I. Stability eigenvalues for the cavity shown in Fig. 1
at two different locations of pump and injection strength. The first
column shows the eigenvalues right before the injected mode is
turned on, with only a single lasing mode active in the cavity. The
second column shows the eigenvalues when both the lasing mode and
amplified mode are present in the cavity and have nearly the same
output intensity. In both cases, the I-SALT solution is found to be
stable, though in the second case, an extra marginal eigenvalue is
found.

Dy =0.075, Bj, =0 Dy = 0.08, B;, =0.10

M —4.608 78 + 0.705 76i —4.61428 + 0.716 61
Ao —4.608 78 — 0.705 76i —4.61428 — 0.716 61
A3 —0.000 88 —0.000 84
Aa —0.000 12 —0.000 16
As 0 0
Ae —4.604 83 +0.344 13i
X —4.604 83 — 0.344 13i
)\.3 0
Lo 0
where

(Dd(x)) = %D/ d(x)d%x (A12)

c

is the spatial average of the inversion. As we are not
considering spatially dependent perturbations, only global
changes in the amplitudes of the fields in the problem, treating
the spatial variation of the inversion would violate our previous
assumptions. It should be noted that this spatial average could
also be performed at the outset (A4)—(A6) without changing
any of these results.

Finally, the evolution of the perturbation in the inver-
sion (A6) can be rewritten using the steady state of the
polarization (A8) and its complex conjugate, and again
integrating over the cavity, to find

8D D [(iy 3
F="np+ <7) gjumg(xnz)

. (SPF SE,
X | Vs B + E. —c.c. |,

(IEs Wy (0)?) = % /C |Ey W, (x)]%dx

(A13)
where

(Al14)
is the spatial average of the lasing mode profile.

The evolution equations for the perturbations, (A10), (A11),
and (Al3), collectively comprise 4(Np+ Ny)+1
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independent equations, four equations per mode for the real
and imaginary portions of (A10) and (A11), and a single real
equation for the perturbation to the atomic inversion (A13),
which couples all of the active modes together. The last step,
which is standard in a stability analysis calculation, is to
assume solutions of these equations in the form

SE,,8P,,8D ox & (A15)

and ensure that all of the solutions are decaying, Re[A] < 0.
However, in the case of a lasing mode there is an undetermined
global phase of the mode; thus, for every lasing mode in the
calculation we expect a single marginal eigenvalue, Re[A] = O,
corresponding to the lack of a restoring force for the phase of
the lasing mode. We also expect a single marginal eigenvalue
for each amplified mode as well. This is a reflection of the
fact that the amplitude perturbation of an injected mode being
considered here is affecting both the incoming and the outgoing
portions of the mode equally,

S Eq(1)W,(x) = SEq(t) {Z a1, (x; wq)

(Al6)

+ Z bgg)vm(x; a)oz):| s

and thus has the ability to change the global phase of both the
incoming and the outgoing components of the mode. However,
it must alter both portions by the same phase shift, thus leaving
the relative phase difference between the incident and the
outgoing components fixed, as is expected.

The results for this spatially averaged stability analysis for
the simulations shown in Fig. 1 can be seen in Table I. The
first column shows the eigenvalues for the cavity when only
a single lasing mode is active, right before the pump is fixed
and the incident mode is turned on, and the I-SALT solution
is found to be stable. As expected, we find four decaying
eigenvalues and a single marginal eigenvalue. The second
column shows the eigenvalues for the cavity when both the
lasing and the amplified modes are present in the cavity at
nearly the location where their output intensities are equal.
Again, the I-SALT solution found is stable, with only decaying
or marginal eigenvalues found; however, an extra marginal
eigenvalue is found, which was not anticipated. The analysis of
why there is an extra marginal eigenvalue is left for the future,
more complete stability analysis of the SALT and I-SALT
solutions.
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