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We demonstrate that the key to realizing arbitrary control over pairs of polarization states of light, i.e.,
transforming an arbitrarily polarized pair of input states to an arbitrarily polarized pair of output states, is
the ability to generate pairs of states with orthogonal polarizations from nonorthogonal pairs of initial
states. Then, we develop a new class of non-Hermitian metamaterials, termed complex birefringent
metamaterials, which are able to do exactly this. Such materials could facilitate the detection of small
polarization changes in scattering experiments as well as enable new polarization multiplexing schemes in
communications networks.

DOI: 10.1103/PhysRevLett.118.253902

Polarization is one of the fundamental properties of light,
and control over the polarization is paramount in many
optical communications and imaging applications. In gen-
eral, the effect of propagation through any media on the
polarization of an incident electromagnetic signal can be
described as jβi ¼ SðzÞjαi, where jαi and jβi are the input
and output polarization states, respectively, and SðzÞ is a
2 × 2 matrix that depends on the properties of the medium,
as well as the propagation distance z. Conventionally, the
polarization of a signal is manipulated through the use of
birefringent materials [1–9]. For lossless birefringent
media, with proper choice of material parameters and
propagation distance, it is always possible to convert an
input polarization jα1i to an arbitrary output polarization
jβ1i. However, once the response to jα1i is determined, the
output polarization jβ2i ¼ Sjα2i is no longer arbitrary for
any other input polarization jα2i. This is because S is
unitary in lossless media, and thus, hβ2jβ1i ¼ hα2jα1i.
In this Letter, we seek to overcome the limitation of

conventional birefringent media by developing a class of
metamaterials which enable arbitrary control over pairs of
polarization states. By arbitrary control, we demand that,
for a pair of arbitrary input polarizations jα1i and jα2i, one
can generate an arbitrary pair of output polarizations jβ1i
and jβ2i. Achieving such polarization control has signifi-
cant implications for a wide range of technologies. For
example, with this capability, one can map two polar-
izations that are close to each other into two orthogonal
polarizations, which may facilitate the detection of small
polarization changes, such as those arising from the
imaging of biological tissues [10,11] and thin films [12].
Likewise, the ability to completely separate nonorthogonal
polarization states could enable new multiplexing schemes
in optical communications networks beyond what is
currently possible [13,14].
First, we show that in order to achieve arbitrary control

over pairs of polarization states, it is sufficient to develop a

class of metamaterials which are capable of performing the
following polarization transformation as denoted by Sθ:

j1; 1i ¼ Sθjθi; ð1Þ

j1;−1i ¼ Sθj − θi: ð2Þ

Here, we assume propagation along the z axis, and label the
polarization states in terms of the electric field components
in the xy plane as jEx; Eyi. j � θi denote the two polari-
zation states that lie on the great circle of the Poincaré
sphere passing through j1; ii and j1; 1i, and are symmet-
rically placed away from j1; ii, subtending an angle of �θ
with respect to j1; ii. Suppose we can construct a class of
materials which can provide Sθ for an arbitrary θ. For an
arbitrary pair of input states jα1i and jα2i, using conven-
tional lossless birefringent materials, one can achieve the
transformation [4,5,8]

jθαi ¼ Uαjα1i; ð3Þ

j − θαi ¼ Uαjα2i; ð4Þ

where Uα is unitary and hθαj − θαi ¼ hα1jα2i. For the pair
of arbitrary output states jβ1i and jβ2i, one can obtain a
similar unitary transformation Uβ that transforms them to
j � θβi. Therefore, the transformation S from the input
states jα1i and jα2i to the output states jβ1i and jβ2i is then

S ¼ U†
βS

−1
θβ
SθαUα: ð5Þ

To achieve the transformation as described by Eqs. (1)
and (2) in general requires a non-Hermitian metamaterial.
Now, we proceed to show that such a transformation can be
realized in a class of complex symmetric metamaterials
with its dielectric tensor having the form
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ε̄ ¼

0
B@

εxx εxy 0

εyx εyy 0

0 0 εzz

1
CA≡

�
ε̄⊥ 0

0 εzz

�
; ð6Þ

in which

εxx ¼ ε�yy ¼ εr − iεi; ð7Þ
εxy ¼ εyx; ð8Þ

where εr, εi, εxy ∈ R. Here, an equal amount of gain and
loss has been added to the x and y axes of a conventional
birefringent material, a choice inspired by recent develop-
ments in optical media with spatially distributed regions
containing equal amounts of gain and loss [15–30].
Henceforth, we refer to materials which obey Eqs. (7)
and (8) as complex birefringent metamaterials.
For light propagating along the z axis of such a medium,

the allowed wave vectors, k�, of a monochromatic signal
with frequency ω, can be found by solving the right
eigenvalue equation [31,32],

ω2με̄⊥jER
�i ¼ k2jER

�i; ð9Þ
in which μ is the scalar magnetic permeability. As such, the
allowed wave vectors and right eigenpolarizations of
complex birefringent metamaterials are

k2�
ω2μ

¼ εr � εxy
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
; ð10Þ

jER
�i ¼

1

N�
j1; iτ �

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
i; ð11Þ

in which τ ¼ εi=εxy represents a normalized measure of the
strength of the gain and loss in the system, and

N2
� ¼ 2ð1 − τ2Þ � 2iτ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
; ð12Þ

is the normalization of the eigenstates. The matrix ω2με̄⊥
also has left eigenpolarizations, which are solutions to
hEL

�jω2με̄⊥ ¼ k2�hEL
�j. Together, the left and right eigen-

polarizations form a biorthogonal basis, and can be
normalized such that hEL

mjER
n i ¼ δmn, with the choice of

N� in Eq. (12).
In conventional lossless birefringent media, ε̄⊥ is

Hermitian, and so hEL
�j ¼ jER

�i†. However, for complex
birefringent materials, ω2με̄⊥ is complex-symmetric, and
the left and right eigenpolarizations are related by
hEL

�j ¼ jER
�iT . Moreover, although the two right eigenpo-

larizations are linearly independent for complex birefrin-
gent materials with jτj ≠ 1, it can be readily seen that they
are not orthogonal, hER∓jER

�i ≠ 0 except for when τ ¼ 0
and the system reverts to a conventional birefringent
material, or when jτj → ∞ and the system becomes a
conventional dichroic material.

The evolution of the polarization of light propagating
within a complex birefringent material with jτj ≠ 1 can be
expressed in terms of the right eigenpolarizations (11), as

jEðzÞi ¼ eik−zðeiΔkzAþjERþi þ A−jER
−iÞ; ð13Þ

in which Δk ¼ kþ − k− is the additional phase accumu-
lated by jERþi relative to jER

−i per unit length, and the initial
amplitudes, A�, are defined in terms of the left eigen-
polarizations as A� ¼ hEL

�jEð0Þi. The resulting polariza-
tion dynamics of a complex birefringent material can be
visualized by plotting the output polarization as a function
of z on the Poincaré sphere. The example shown in Fig. 1(a)
illustrates the polarization dynamics when jτj < 1, for
which both allowed wave vectors are real, k� ∈ R. This
is analogous to the exact phase in parity-time symmetric
systems [17–19]. For the sake of comparison, we also plot
the polarization dynamics for a conventional Hermitian
birefringent material in Fig. 1(b), as described by setting
εi ¼ 0 in Eq. (6). For both types of materials, as shown in
Fig. 1, the eigenpolarizations define the fixed point of the
dynamics. Thus, so long as the incident polarization is not
parallel to one of these eigenpolarizations, the polarization
of the initial signal forms a closed trajectory around the
eigenpolarizations as z is varied.
When τ ¼ 0, which describes a conventional lossless

birefringent material, the two eigenpolarizations are located
at j1; 1i and j1;−1i, corresponding to two linearly polar-
ized states. The two eigenstates are orthogonal to each
other, and the polarization trajectories form circles around
the axis formed by the two eigenstates, shown in Fig. 1(b).

(a) (b)

FIG. 1. (a) Flow lines (yellow) depict the polarization dynamics
on the Poincaré sphere when light travels along the z direction
through a complex birefringent material as described by Eqs. (6)–
(8) with τ ¼ 0.81. Note that the shape of the flow lines depends
only the value of τ. The great circle containing j1; ii and j1; 1i is
shown in blue. The nonorthogonal eigenpolarizations of the
dielectric tensor which form the axis of polarization flow are
shown in red. The purple crosses show the initial nonorthogonal
polarization states j � θi which can be mapped to the orthogonal
polarization states j1;�1i, shown as purple circles, as described
by Eqs. (1) and (2). (b) Flow lines (yellow) depict the polarization
dynamics on the Poincaré sphere when traveling through a
conventional birefringent material, with τ ¼ 0. The orthogonal
eigenpolarizations of the dielectric tensor are shown in red.
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(On the Poincaré sphere, orthogonal states are represented
by antipodal points.) As τ is increased, so that 0 < τ < 1,
the two eigenpolarizations remain on the great circle
connecting j1; 1i and j1; ii, but are tilted away from the
states j1;�1i towards j1; ii, which is a manifestation of the
nonorthogonality of these two eigenstates. For −1 < τ < 0,
the eigenstates tilt away from j1;�1i towards j1;−ii. In
both cases, as k� ∈ R, the polarization trajectories are still
closed, but are no longer centered on the axis formed by the
eigenstates, as shown in Fig. 1(a).
Examining the polarization dynamics of Fig. 1(a), we

note that there are two states lying on the great circle
connecting j1; 1i and j1; ii, indicated by the purple crosses,
which can be transformed to the two states j1; 1i and
j1;−1i, indicated by purple circles, with a proper choice of
the system parameters. Therefore, complex birefringent
metamaterials with 0 < jτj < 1, indeed, provide the key
nontrivial step required for achieving arbitrary control over
pairs of polarization states, which is to realize Sθ as defined
in Eqs. (1) and (2). Mathematically, the complex birefrin-
gent metamaterial which transforms a given pair of input
states j � θi to the two final states j1;�1i satisfies

eiΔkl ¼ hEL
−j � θihELþj1;�1i

hELþj � θihEL
−j1;�1i ; jτj < 1: ð14Þ

Equation (14) represents a single complex transcendental
equation, as τ appears in both Δk and the left eigenstates
hEL

�j, and solving Eq. (14) for either choice of � yields a
solution which satisfies the other choice. In practice, there
are four independent properties of the system which can be
tuned to satisfy this criteria, εr, εi, εxy, and l, and yet,
Eq. (14), as a complex equation, provides only two
constraints; therefore, many different systems can be found
which realize the same transformation Sθ. As such, for a
fixed l, one can modify the dielectric parameters to achieve
different Sθ. Thus, a tunable metamaterial [33–36] with a
fixed length can be used to achieve arbitrary polarization
control. In general, as the choice of initial states become
parallel (θ → 0), stronger effective gain and loss, jτj → 1,
as well as longer effective propagation distances, Δkl, are
required to produce orthogonal output states.
Up to this point, we have focused on the regime of

jτj < 1; however, this class of metamaterials also exhibits
interesting polarization dynamics with jτj ≥ 1. When
jτj > 1, both eigenvalues k� become complex, with
kþ ¼ k�−. This is analogous to the broken phase in
parity-time symmetric systems. In this regime, the eigen-
polarizations reside along the great circle on the Poincaré
sphere connecting j1; 0i, j0; 1i, and j1;�ii. As z varies, the
eigenstates correspond to a stable or an unstable fixed point
on the Poincaré sphere depending on the sign of Im½k��, as
shown in Fig. 2(a), and the material provides polarization-
dependent attenuation and amplification. As jτj → ∞, the
system becomes a conventional dichroic material with
orthogonal eigenpolarizations j1; 0i and j0; 1i.

When jτj ¼ 1, complex birefringent materials possess an
exceptional point [37,38] where both the eigenvalues and
eigenvectors coalesce, and the eigenvectors become self-
orthogonal, hEL

�jER
�i ¼ 0. This yields two unique proper-

ties. First, the expression for the evolution of the electric
field (13) is no longer valid as ω2με̄⊥ has a nontrivial
Jordan normal form. Instead, the evolution of the field must
be expressed in terms of the single remaining eigenvector,
jERi and its associated Jordan vector, jJRi [39,40], as

jEðzÞi ¼ eik0z½ðAE þ iAJk0zÞjERi þ AJjJRi�; ð15Þ

in which k0 ¼ ω
ffiffiffiffiffiffiffi
μεr

p
, and AE, AJ are the modal ampli-

tudes at z ¼ 0. The derivation of this equation is provided
in the Supplemental Material [41]. As can be seen in
Eq. (15), the polarization of light flowing through a
complex birefringent material at jτj ¼ 1 has only a single
fixed point that corresponds to circularly polarized light, to
which the polarization of every initial state with AJ ≠ 0
converges through linear amplification as a function of z.
Second, any initial polarization state converges to the fixed
point from a single direction, along the j1; 0i to j1; ii
contour for τ ¼ 1 as shown in Fig. 2(b). This is distinct
from what is observed for the stable fixed point when
jτj > 1, in which jER

−i can be approached from any
direction.
In all three of their phases with τ ≠ 0, complex bire-

fringent materials are necessarily active optical structures
and, in general, do not conserve the intensity of the incident
radiation. This fact is immediately evident from the linear
and exponential amplification present when jτj ≥ 1. When
jτj < 1, k� are real, and the intensity is a periodic function
of z,

(b)(a)

FIG. 2. (a) Flow lines (yellow) depict the polarization dynamics
on the Poincaré sphere when light travels along the z direction
througha complex birefringentmaterial as described byEqs. (6)–(8)
with τ ¼ 1.5. The eigenvectors of the dielectric tensor are shown in
red, with the arrow indicating the direction in which the polarization
flows for εxy > 0. (b) Flow lines (yellow) depict the polarization
dynamicswhen light travels along the z direction through a complex
birefringent material as described by Eqs. (6)–(8) with τ ¼ 1. The
single eigenpolarization of the system is j1; ii (red).
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IðzÞ ¼ jAþj2hERþjERþi þ A�þA−e−iΔkzhERþjER
−i

þ jA−j2hER
−jER

−i þ A�
−AþeiΔkzhER

−jERþi: ð16Þ

Thus, in this case, the total change in the intensity is
bounded. Even though the intensity is not conserved in
complex birefringent materials, two generalized unitarity
relations can be derived which relate the transmission and
reflection coefficients of the scattering matrix, S [23,42], as
shown in the Supplemental Material [41]. These conserved
quantities stem from the fact that complex birefringent
materials are invariant upon the operation that switches the
x and y axes of the system, M, and the time-reversal
operation, T , thus,

ðMT ÞSðMT Þ ¼ S−1: ð17Þ

There are many possible experimental realizations of
complex birefringent materials. A dielectric response as
described by Eqs. (6)–(8) has been previously realized
experimentally in a metasurface structure [28]. However, in
order to observe the polarization dynamics effects and to
achieve the capability for arbitrary control over pairs of
polarization states, neither of which are considered in [28],
it would be interesting to create three-dimensional media
where the effective propagation distance can be varied.
Therefore, here we focus on the construction of three-
dimensional systems with the appropriate dielectric tensor.
As an example, one could construct a metamaterial con-
sisting of an ordinary birefringent material interspersed
with layers containing regions of both gain and loss, as
depicted in Fig. 3(a). Transfer matrix calculations of this
exact structure without using the effective medium approxi-
mation in the propagation direction confirm its ability to
separate a pair of initial states with similar polarizations to
be nearly orthogonal, shown in Fig. 3(b). A tunable version
of this system is discussed in the Supplemental
Material [41].
Alternatively, there are many methods for adding bire-

fringence to optical fibers geometrically, allowing for
εxy ≠ 0. By doping such a birefringent fiber, gain could
be added to both εxx and εyy. Then, all that is required to
realize complex birefringence is the ability to add loss
specifically to εyy. Regardless of the specific realization
chosen, the experimental design of complex birefringent
materials benefits from the critical feature that the amount
of gain and loss, εi, necessary to observe significant
nontrivial polarization dynamics is set by the anisotropy
of the system, εxy, which can be designed to be quite small.
Thus, very little gain or loss is necessary to realize arbitrary
control over pairs of polarization states in these materials.
Here, we have focused on metamaterials with εxx ¼ ε�yy,

as this choice yields a regime of parameter space, jτj < 1,
where the eigenvalues of the system are real, and as such,
the change in intensity of an incident signal is bounded.
However, many other choices of εxx; εyy ∈ C, such as

birefringent materials with loss in a single polarization
channel, i.e., εxx ¼ εr and εyy ¼ εr þ 2iεi with εxy ≠ 0,
will still yield nonorthogonal eigenvectors, which can allow
for nearly arbitrary control over pairs of polarization states
as shown in Fig. S2 in the Supplemental Material [41].
Similarly, off-axis propagation in directions which do not
conserve M also results in an entirely complex spectrum
even for jτj < 1. Fortunately, the rate at which k� acquires
an imaginary component for off-axis propagation is slow
relative to the change in propagation angle, as shown in
Fig. S3 [41], and thus, the off-axis components of a wave
packet traveling through a complex birefringent metama-
terial will experience similar polarization dynamics to the
on-axis component.
In conclusion, we have developed a theory of complex

symmetric anisotropic dielectric materials and demon-
strated that such systems enable arbitrary control over

(a)

(b)

FIG. 3. (a) Schematic of a complex birefringent metamaterial,
consisting of layers of a conventional birefringent material (gray),
and layers of a material containing gain (red) and loss (blue),
forming a comb. The patterning of the structure is assumed to be
fine enough relative to the wavelength of the light so as to be in
the effective medium limit. (b) Transformation of the polarization
on the Poincaré sphere of two signals through 59 μm of a
complex birefringent metamaterial, as shown schematically in
(a). Here, for an incident light with wavelength 1.55 μm, we have
used calcium carbonate whose ordinary and extraordinary axes
are rotated 7.47° with respect to the lab frame, yielding a
dielectric tensor with εxx ¼ 2.66, εyy ¼ 2.19, εxy ¼ 0.063. The
isotropic gain has ε ¼ 4 − 0.1i, and the isotropic loss has
ε ¼ 9.74þ 0.63i. By forming a comb consisting of 77% gain
regions and 23% loss regions, the effective dielectric tensor
is anisotropic in this layer, with ε∥ ¼ 5.34þ 0.07i and
ε∥ ¼ 4.64 − 0.07i. By using 30 nm layers of calcium carbonate,
and 20 nm layers of the gain and loss, the total system constitutes
a complex birefringent metamaterial with εxx ¼ 3.454 − 0.028i,
εyy ¼ 3.453þ 0.028i, and εxy ¼ 0.038 (see Supplemental
Material [41]), which corresponds to τ ¼ 0.75. The initial signal
polarizations are separated by 16.2° (cyan circles), while the final
polarization states are nearly orthogonal (cyan triangles). The
surrounding medium is air, ε ¼ 1.
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pairs of polarization states. In particular, such complex
birefringent materials may have applications in both split-
ting signals with adjacent polarizations and nearly combin-
ing signals with orthogonal polarizations.
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