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Abstract
Thouless charge pumping protocols provide a route for one-dimensional systems to realize topological transport.
Here, using arrays of evanescently coupled optical waveguides, we experimentally demonstrate bulk Thouless
pumping in the presence of disorder. The degree of pumping is quite tolerant to significant deviations from
adiabaticity as well as the addition of system disorder until the disorder is sufficiently strong to reduce the bulk
mobility gap of the system to be on the scale of the modulation frequency of the system. Moreover, we show that this
approach realizes near-full-unit-cell transport per pump cycle for a physically relevant class of localized initial system
excitations. Thus, temporally pumped systems can potentially be used as a design principle for a new class of
modulated slow-light devices that are resistant to system disorder.

Introduction
Adiabatic charge pumps1–4 are an important class of

topological systems, as they can exhibit robust transport
and provide a physically intuitive mathematical mapping
between a one-dimensional system and the intrinsically
two-dimensional quantum Hall effect5. Moreover, pho-
tonic realizations of such systems represent alternatives to
two-dimensional photonic topological insulators with
chiral edge states6–17 for achieving compact on-chip slow-
light waveguides18–28. In the traditional electronic picture
of adiabatic charge pumps, a system with a uniformly
filled valence band is periodically modulated such that
after a complete cycle, each localized Wannier state in the
occupied band has adiabatically evolved to be transported
by exactly one unit cell. If the system is finite, then the
Wannier state that arrives at the edge of the system, which
cannot be pumped further, is instead pumped across the
bandgap to the conduction band1. These systems were
originally proposed by Thouless1 and can be viewed as
Chern insulators in 1+ 1 dimensions29, in which the
periodic modulation in time is substituted for the second
spatial dimension. The parameter that defines the
Hamiltonian at any given time, called the pump

parameter, maps to a momentum in the corresponding
2D system that is perpendicular to the direction of
pumping.
Previous studies of adiabatic pumps in optical systems

have focused on observing edge-to-edge transport, in
which the system is initialized in a topological edge state of
the one-dimensional system and this state is evolved
through a complete pumping cycle, transporting it to the
opposite edge of the system13,30–32. Achieving this form of
topological pumping requires ‘state-level’ adiabaticity; i.e.,
the modulation of the system does not introduce any
coupling between states that reside within the same bulk
band due to deviations from perfect adiabaticity. If such
couplings exist, then many bulk bands will be populated
during the pumping process, and the wavefunction will
not be completely pumped to the opposite side of the
system. This constraint is limiting, as the spacing between
the individual states that constitute the bulk bands of the
system is inversely proportional to the size of the finite
system, effectively constraining this procedure to small
system sizes or long modulation periods. In contrast, in
this work, we focus on bulk transport in adiabatically
pumped optical platforms, in which only bandgap-level
adiabaticity is necessary to achieve quantized pumping due
to the conservation of lattice momentum. In previous
theoretical studies in the context of electronic pumps33–36,
it has been demonstrated that deviations from adiabaticity
in Thouless pumps lead to corrections to the transport of
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the wavefunction which are only polynomially small in the
driving frequency, rather than exponentially small.
Experiments in cold-atom systems have probed bulk
topological pumping37,38, but here, we also seek to address
the effects of disorder, as this breaks translational sym-
metry, implying that the lattice momentum is no longer
conserved, and thus potentially degrades the bulk trans-
port properties2,3,39,40.
In this article, we experimentally demonstrate nearly

quantized topological transport in Thouless pumped
optical systems that only possess bandgap-level adiaba-
ticity and are initially excited using single-site excitations.
We find that the addition of disorder does not sig-
nificantly affect the observed transport until the strength
of the disorder reduces the size of the mobility gap of the
instantaneous spectrum to be approximately equal to the
modulation frequency, i.e., when Zener tunneling can
occur. Our experimental system is fabricated in an eva-
nescently coupled one-dimensional single-mode wave-
guide array using femtosecond direct laser writing41.
Within the waveguide array, we are able to achieve
adiabatic pumping by modulating the index of refraction
of the waveguide arrays as well as the relative distance
between neighboring waveguides, while system disorder
is fabricated into the arrays by changing the average
spacing (over one pump cycle) between neighboring
waveguides.

Results
Our experimental system consists of an array of eva-

nescently coupled single-mode waveguides that are laser-
written into borosilicate glass. As the diffraction of light
through waveguide arrays is governed by the paraxial
Schrödinger equation and the light is tightly confined
to the waveguides, this system can be modeled using
the tight-binding approximation, with the propagation

distance along the waveguides, z, replacing time evolution,

i∂z ψ zð Þj i ¼ Ĥ zð Þ ψðzÞj i ð1Þ

where |ψ(z)〉 is the envelope function of the electric field
on each of the waveguides for a given incident
wavelength, λ. Moreover, we will refer to the eigenvalues
of Eq. (1) as energies, although physically they correspond
to deviations in the propagation constant, β, of the
wavefunction, ψ, along the axial direction of the
waveguides, with kz= k0+ β, in which k0= n0ω/c and n0
= 1.473 is the index of refraction of the surrounding glass.
Thus, an adiabatic pump protocol can be written into a
waveguide array by periodically modulating both the
index of refraction and the separation in between the
waveguides as a function of the propagation distance, z,
which changes the effective on-site energy and the
effective coupling coefficients, respectively13. A schematic
of the experimental system is shown in Fig. 1a.
The adiabatic pump protocol that we choose is the

Rice–Mele model42, which is a bipartite array generated
by periodically modulating the on-site energies and cou-
pling coefficients of a one-dimensional integer lattice with
a two-member unit cell. The tight-binding Hamiltonian
for the Rice-Mele model can be written as

ĤRM zð Þ ¼
X

j

τ

2
þ δ jðzÞ

2

� �
ĉyj ĉjþ1 þ h:c:

� �
þ ΔjðzÞĉyj ĉj

ð2Þ

in which ĉyj and ĉj are the creation and annihilation
operators on lattice site j, τ is the uniform coupling
strength, and δj(z) and Δj(z) are the degree of dimerization
and staggered sublattice on-site energies, which are
chosen to be periodic functions with period Z. Although
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Fig. 1 a Schematic of the Rice–Mele waveguide lattice. b Instantaneous eigenvalue spectrum for a waveguide array designed to exhibit the
Rice–Mele model, Eqs. (2)–(4), over the full adiabatic pump cycle. c Spectral decomposition of the wavefunction over the instantaneous eigenstates
of the ordered system with periodic boundary conditions, |φn〉, as a function of the propagation distance. The simulated supercell contains 30 unit
cells. The instantaneous eigenstates are ordered by their energy, so all of the upper band (i.e., occupied) states of the system are shown on the right
half of this plot. d Histogram of the experimentally observed displacements of the waveguide array as light is injected into the bulk of the system one
waveguide at a time. Different colors represent different incident wavelengths, λ= [1450, 1500, 1550, 1600, 1650 nm], listed in order of cyan to
magenta. e Three exemplars of the direct observation of transport at the output facet of the waveguide array at λ= 1650 nm. The waveguide
locations are outlined in green circles, except for the location of the initially excited waveguide, which is outlined in yellow
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the periodic on- and off-site modulations, δj(z) and Δj(z),
are typically both chosen to be alternating sinusoids in the
Rice–Mele model, the evanescent couplings between
neighboring waveguides in our experiment instead result
in a “lopsided” Rice–Mele system, with

δ j zð Þ ¼ τ eð�1Þj~δ sin 2πz
Zð Þ � 1

� �
ð3Þ

Δj zð Þ ¼ ð�1ÞjΔ cos
2πz
Z

� �
ð4Þ

where Δ describes the degree of variation in on-site
energy (as a result of the modulation of the index of
refraction), and ~δ describes the degree of modulation of
the coupling between the waveguides given a sinusoidal
variation in the distance between them. For our experi-
mental system with an average spacing between wave-
guides of l = 36 μm, a sinusoidal variation in the spacing
of δl = ±8 μm, an average refractive index shift of Δn=
2.7 × 10−3 from the surrounding glass substrate, and a
sinusoidal variation in the refractive index of δn = ±0.3 ×
10−3, the model coefficients are found to be τ=
0.55 cm−1, Δ=τ = 6.97, and ~δ = 2.11 for λ= 1650 nm.
The topological properties of the Rice–Mele model are

determined by the closed trajectory of the modulation in
(δj(z), Δj(z))-space. If the system adiabatically evolves over
a full period such that this trajectory encircles the origin,
then a localized Wannier state arising from a given bulk
band is transported to the right by a single unit cell
(corresponding to Chern number 1). In terms of the edge
properties, if an edge state is initially populated, then over
the pump cycle it traverses the bulk and populates the
edge state on the other side of the lattice. If the system
adiabatically evolves over a full period such that its tra-
jectory in (δj(z), Δj(z))-space does not contain the origin,
then neither of these phenomena occur. We can confirm
that our experimental pumping protocol realizes an
adiabatic pump by simulating the instantaneous spectrum
through a full modulation cycle and noting the appear-
ance of edge states crossing the bulk bandgap, as shown
in Fig. 1b.
There are two additional requirements for realizing

quantized bulk transport in the Rice–Mele system. First,
the initial state of the system must be a Wannier state and
thus uniformly fill an entire bulk band of the system.
Second, the modulation of the system must be slow
enough to not introduce any inter-band couplings
between the instantaneous eigenstates. Note that the
requirement on the modulation speed of the Thouless
pump is different for edge-to-edge transport and bulk
transport. Thouless pump protocols preserve the system’s
translational symmetry, and as such, different states
within the same bulk band, which possess different
momenta, cannot couple due to conservation of lattice

momentum. Thus, realizing quantized bulk transport in a
Thouless pump only requires bandgap-level adiabaticity
as intraband transitions are prohibited. In contrast, to
realize edge-to-edge transport, the system necessarily has
broken translational symmetry, as both the initial and
final states reside at the edges. As such, edge-to-edge
pumping instead requires state-level adiabaticity.
In a perfectly clean waveguide array (i.e., one without

disorder), we realize a near-Wannier initial state by
choosing our input facet to coincide with the point in the
modulation period where the waveguides are evenly
spaced and have maximally detuned indices of refraction
(i.e., on-site energies). At this point, an initial single-
waveguide excitation has approximately uniform overlap
with all of the instantaneous states of a single bulk band.
We can confirm this feature numerically and demonstrate
that our system is bandgap-level adiabatic through
simulations with periodic boundary conditions using this
single-waveguide input. In Fig. 1c, we show the nearly
uniform and nearly constant projection of the propagating
wavefunction onto the instantaneous eigenstates of the
periodic system, |φn〉, over a full modulation cycle. This
simulation also confirms that although our system is only
bandgap-level adiabatic, exhibiting very weak coupling
between states in the upper and lower bulk bands, con-
servation of lattice momentum protects against intraband
couplings, so the initial nearly uniform distribution of the
wavefunction over a single bulk band is maintained
through the complete modulation cycle.
As such, upon injecting this spatially localized wave-

function into the array and allowing it to propagate for a
full adiabatic pump cycle, we experimentally observe the
transport to be nearly a full unit cell, as shown in Fig. 1d,
i.e., that

Δxψ Zð Þ ¼ ψðZÞjxjψðZÞh i � ψð0Þjxjψð0Þh i � 1 ð5Þ

In our waveguide arrays, the choice of which of the two
waveguides in each unit cell to inject light into determines
which bulk band of the system is excited, and as the two
bulk bands possess opposite Chern numbers, this dictates
the direction of propagation. In Fig. 1d, this displacement
is calculated relative to the expected direction of travel for
injection into each waveguide. Examples of the experi-
mentally observed transport at the output facet of the
waveguide array are shown in Fig. 1e.
For this experiment, the minimum pumping period

required for bandgap-level adiabaticity is ~6 cm. For the
Rice–Mele system to be bandgap-level adiabatic, the
average coupling coefficient, τ, which sets the energy
scale of the system, must yield a larger instantaneous bulk
bandgap than the modulation frequency, Ω= 2π/Z. This
amounts to requiring that the dimensionless product τZ
be sufficiently large. This relationship can be effectively
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seen in Fig. 2a, where we numerically calculate Δxψ(Z) as a
function of τZ and observe the appearance of a plateau,
Δxψ(Z) ≈ 1, whose boundary is defined by τZ ≈ 20.
Here, we use a sinusoidally modulated system,
Δj zð Þ ¼ ð�1ÞjΔ cosðΩzÞ, and δ j zð Þ ¼ ð�1Þjδ sinðΩzÞ,
and fix the ratios Δ=τ and δ=τ to maintain the same
effective strength of the adiabatic pump.
Upon introducing disorder to the system, lattice

momentum is no longer conserved, and for a finite system
(with periodic boundary conditions), the bulk bands break
up into two groups of m subbands each, where m is the
number of unit cells. As long as the disorder is sufficiently
weak that a bulk bandgap remains between these groups,
the Chern number of the bands of the disordered system

is well defined2,3,39,40. In a ground-state fermionic system
(with all the subbands of a group equally populated), this
topological invariant implies that the adiabatic pumping
process will still yield quantized transport. However, in a
nonequilibrium bosonic system without state-level adia-
baticity, intra-subband transitions within a single band are
now in principle possible, and these transitions can
degrade the observed nearly quantized transport.
Nevertheless, despite the possibility for degraded

transport properties in the presence of system disorder,
we do not observe this to be a significant effect. To
demonstrate that the nearly quantized transport seen in
Thouless pumped photonic systems with only bandgap-
level adiabaticity is tolerant to disorder, we add disorder
terms to the lattice Hamiltonian, Ĥ ¼ ĤRM þ Ĥdis, with

Ĥdis ¼
X

j

Ξonξ j;onĉ
y
j ĉj þ Ξoffξ j;off ĉyj ĉjþ1 þ h:c:

� �
ð6Þ

where Ξon and Ξoff are the overall strength of the on- and
off-site disorder, respectively, and ξ j;on; ξ j;off 2 ½�1; 1� are
uniformly distributed random numbers.
The nearly quantized bulk-band transport properties of

the disordered Rice–Mele lattice can be seen in the top
panels of Fig. 2b, c, in which the ensemble-averaged net
displacement of a single-band spatially localized initial
wavefunction exhibits a plateau until the strength of the
disorder becomes sufficiently strong. Moreover, as seen in
the bottom panels of Fig. 2b, c, the ensemble-averaged
size of the minimum mobility gap between the bulk bands
throughout the modulation cycle also decreases as the
strength of the disorder is increased. By comparing
the upper and lower panels of Fig. 2b, c, it is clear that the
plateau terminates when the minimum mobility gap of
the instantaneous eigenvalues becomes similar to the
pump frequency, Ω. The ensemble of simulations shown
here consists of 1000 independent realizations of the
disorder and uses sinusoidal variations of the on- and off-
site disorder coefficients. We have also numerically con-
firmed that the qualitative results are independent of the
amount of diffraction of the propagating wavefunction,
which is determined by Δ and δ. Thus, these simulations
demonstrate that the presence of intraband transitions
caused by the addition of disorder does not immediately
result in the decay of the bulk transport properties.
Instead, the average bulk transport in these systems
remains nearly constant until the disorder is sufficiently
strong to allow for Zener tunneling.
To experimentally demonstrate that the bulk transport

properties of this pumped system remain nearly quantized
in the presence of system disorder while the system
remains bandgap-level adiabatic, we add disorder to our
waveguide arrays by displacing the average position of
each waveguide by Ldisorder ξj,off, in which Ldisorder is the
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Fig. 2 a Numerical calculation of Δxψ(Z) as a function of the product of
the average coupling and modulation length, τZ, for a Rice–Mele
system with sinusoidal variation of Δj and δj. The color of the squares
and circle corresponds to the values of τZ for the simulations shown in
b (squares) and c (circle), below. b Ensemble-averaged displacement
of a localized initial wavefunction (top panel) and minimum mobility
gap (bottom panel) through three modulation periods as a function
of the added on-site disorder, Ξon. Different color curves correspond
to different choices of modulation period, τZ = [1, 2, 4, 8, 16, 32, 64],
listed from cyan to magenta. The shaded region behind each curve
shows the range of ± one standard deviation of the ensemble. The
vertical dash-dot lines running through both panels are a visual guide
showing where the minimum mobility gap becomes equal to the
modulation frequency for each choice of τZ. The horizontal dashed
lines in the bottom panel indicate the modulation frequency, Ω. Note
that for τZ = [1, 2], the modulation frequency is always greater than
the system’s minimum mobility gap, even without any added
disorder. c Similar to b, except that different color curves correspond
to increasing numbers of modulation cycles, N = [1, 2, 5, 7, 10, 15],
listed from black to light brown, for τZ = 32
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magnitude of the shift in the center of each waveguide.
Individual examples of the experimentally observed
transport in the disordered waveguide array at the output
facet are shown in Fig. 3a. To determine when the
(ordered) waveguide array is bandgap-level adiabatic, we
calculate Δxψ(Z) as a function of the wavelength and
the modulation period, as shown in Fig. 3b. Here, we use
the wavelength as an experimentally accessible proxy for
the average coupling coefficient, τ, as the two are expo-
nentially related, with longer wavelengths yielding larger
average coupling coefficients. However, changing the
wavelength also affects the other two model parameters, Δ
and ~δ, with longer wavelengths effectively decreasing both
Δ=τ and ~δ, which ultimately results in decreasing the
strength of the adiabatic pump. This is why the system
leaves the bandgap-level adiabatic regime for increasing λ
at fixed Z. The oscillations seen in Fig. 3b for short
modulation cycles and long wavelengths correspond to
when the system is in the “handoff” regime, i.e., Δxψ(Z) ≈
1, not because the system is adiabatic but because the
coupling strength and length conspire to completely
transfer all of the light from one waveguide to its neighbor
when the two are closest to each other during the mod-
ulation cycle. Likewise, the valleys between these peaks
correspond to a similar effect where the coupling strength

and length result in all of the light returning to the ori-
ginally excited waveguide when the two waveguides are
close together.
As seen by comparing the top and bottom panels in

Fig. 3c, we observe a plateau in the ensemble-averaged
transport that ends when the disorder becomes strong
enough to close the instantaneous minimum mobility gap
to be approximately equal to the modulation frequency,
Ω. We note that in this experimental system, the plateau
appears to terminate slightly before the numerical pre-
diction, based on the size of the instantaneous mobility
gap, would predict. This result is likely due to additional
system disorder from fabrication imperfections. However,
the observation that longer wavelengths, which are more
adiabatic, exhibit longer transport plateaus as the disorder
strength is increased confirms the expected qualitative
behavior of the system. In addition, while the system
remains bandgap-level adiabatic, not only does the
ensemble-averaged transport remain such that Δxψ(Z) ≈ 1,
but the distribution thereof remains narrow as well. This
finding can also be seen in Fig. 3c, where the more
adiabatic longer wavelengths (magenta colors) exhibit a
significantly narrower distribution of their displacements
than those for the shorter wavelengths, which have left the
adiabatic regime (cyan colors).
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calculation of Δxψ(Z) for the (ordered) Rice–Mele waveguide lattice, Eqs. (2)–(4), as a function of the wavelength, λ, and modulation period, Z.
c Experimentally observed ensemble-averaged displacement (top panel) and simulated minimum mobility gap (bottom panel) versus the strength of
the disorder for a single modulation cycle. Different colors correspond to different incident wavelengths, λ= [1450, 1500, 1550, 1600, 1650 nm], listed
in order of cyan to magenta, and indicated in b. The modulation period is Z = 12 cm. The ensemble consists of 50 different realizations of the
disorder. The shaded region behind each curve shows the range of ± one standard deviation of the ensemble. The modulation frequency, Ω, is
indicated as a horizontal dashed line. Vertical dash-dot lines running through both panels are a visual guide showing where the minimum mobility
gap becomes equal to the modulation frequency for each wavelength
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Discussion
In conclusion, we have experimentally demonstrated

adiabatic pumping in a photonic system and shown that
such systems can exhibit nearly quantized transport even if
they are only bandgap-level adiabatic in the presence of
disorder. Looking forward, it would be interesting to explore
the connection between Thouless pumps and dynamical
quantum ratchets43,44, as both types of systems can exhibit
bulk transport due to modulation. In photonics, we envision
that this expanded parameter space of temporally modulated
systems, and in particular adiabatic pumps, can be used as a
design principle for future on-chip slow-light applications.

Materials and methods
A titanium:sapphire laser and amplifier system (Coherent,

RegA 9000) with repetition rate 250 kHz, pulse duration
270 fs, and pulse energy 820 nJ was used to write the
waveguide arrays into Corning Eagle XG borosilicate glass,
n0= 1.473. To control the size and shape of the laser’s focal
volume within the glass sample, the beam was first sent
through a beam-shaping cylindrical telescope and then
focused with a ×50 aberration-corrected microscope objec-
tive (NA= 0.55). Physically, the waveguides were written by
translating the glass sample through the laser’s focus using a
set of high-precision three-axis stages (Aerotech, model
ABL20020). The speed of this translation was varied
between 9 and 27mm/s to generate refractive index shifts
between Δn0 = 3.0 × 10−3 and Δn0= 2.4 × 10−3, noting that
the slower speeds correspond to larger increases in the
refractive index of the system. This range of variation in the
index of refraction of the waveguides, as well as the average
separation and variation in the waveguide spacing, l =
36 μm and δl= 8 μm, respectively, were chosen to allow for
the system to be in the bandgap-level adiabatic regime for
our longest excitation wavelength of λ = 1650 nm, while
being in the non-adiabatic regime for our shortest excitation
wavelength, λ= 1450 nm.
The waveguide arrays were measured by butt-coupling a

single-mode optical fiber to a single waveguide in the
array at the input facet of the glass sample. A tunable mid-
infrared diode laser, 1450–1650 nm (Agilent 8164B), was
used as the light source for these measurements. Light
was collected at the output facet of the glass sample using
an NA= 0.2 microscope objective lens and imaged onto a
near-infrared InGaAs camera (ICI systems).
In numerical simulations, these waveguides were mod-

eled as possessing a hyper-Gaussian distribution to their
index of refraction,

Δn x; y; zð Þ ¼ Δn0 zð Þe
� x

σxð Þ2þ y
σy

� �2
� �3

ð7Þ

Here, Δn0(z) is the z-dependent shift in the index of
refraction of the waveguide from the surrounding glass,

and σx= 3.2 μm and σy= 4.9 μm characterize the elliptical
geometry of the waveguide.
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