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ABSTRACT
Recently, the spectral localizer framework has emerged as an efficient approach for classifying topology in photonic systems featuring local
nonlinearities and radiative environments. In nonlinear systems, this framework provides rigorous definitions for concepts such as topolog-
ical solitons and topological dynamics, where a system’s occupation induces a local change in its topology due to nonlinearity. For systems
embedded in radiative environments that do not possess a shared bulk spectral gap, this framework enables the identification of local topology
and shows that local topological protection is preserved despite the lack of a common gap. However, as the spectral localizer framework is
rooted in the mathematics of C∗-algebras, and not vector bundles, understanding and using this framework requires developing intuition
for a somewhat different set of underlying concepts than those that appear in traditional approaches for classifying material topology. In this
tutorial, we introduce the spectral localizer framework from a ground-up perspective and provide physically motivated arguments for under-
standing its local topological markers and associated local measure of topological protection. In doing so, we provide numerous examples of
the framework’s application to a variety of topological classes, including crystalline and higher-order topology. We then show how Maxwell’s
equations can be reformulated to be compatible with the spectral localizer framework, including the possibility of radiative boundary condi-
tions. To aid in this introduction, we also provide a physics-oriented introduction to multi-operator pseudospectral methods and numerical
K-theory, two mathematical concepts that form the foundation for the spectral localizer framework. Finally, we provide some mathematically
oriented comments on the C∗-algebraic origins of this framework, including a discussion of real C∗-algebras and graded C∗-algebras that are
necessary for incorporating physical symmetries. Looking forward, we hope that this tutorial will serve as an approachable starting point for
learning the foundations of the spectral localizer framework.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0239018

I. INTRODUCTION
Since the seminal works of Haldane and Raghu1,2 demon-

strated that topological phenomena can manifest in any material
system governed by a wave equation, the ideas of topological physics
have excited the photonics community,3 both to use photonic plat-
forms to explore new fundamental concepts and for leveraging
topology’s benefits in photonic devices. In particular, topological
photonic systems are both guaranteed to exhibit localized states at
their boundaries or corners, and these states’ existence are robust
against fabrication imperfections, yielding an enticing suite of prop-
erties for enhancing light–matter interactions4 and routing quan-
tum information.5 Early, and still ongoing, efforts in the field of
topological photonics have focused on finding systems that realize

non-reciprocal topological phenomena at technologically relevant
wavelengths6–18 despite the present lack of materials with a strong
magneto-optical response at those same wavelengths. In addition,
the community has also explored other classes of topology that do
not require breaking time-reversal symmetry,19–42 but whose pro-
tected states are either reciprocal or zero-dimensional cavity states.
More recently, the field has begun to shift its focus toward using
topology in photonic devices, creating topological lasers43–51 as well
as systems for controlling quantum light.23,24,33,34,38,40,41,52

Traditionally, topological phenomena are identified via invari-
ants calculated using the band structure and Bloch eigenstates
of a gapped (i.e., insulating) crystalline system, and these invari-
ants cannot change without first closing the bulk bandgap.53,54 As
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such, a system’s invariants are protected against disorder that is
not strong enough to close the bandgap. Moreover, bulk–boundary
correspondence55,56 guarantees that a system with a non-trivial
invariant exhibits some set of boundary- or corner-localized states.
Thus, topological band theory is ideally suited to predicting the edge
transport properties of large systems without needing to ensure any
particular edge termination and regardless of strong disorder along
the boundary or interface. In other words, such an approach is ideal
for predicting the behavior of condensed matter systems.

However, the frontiers of topological photonics are diverging
from those of condensed matter physics due to the different physical
phenomena available in, as well as the different desired applica-
tions of, each platform. In particular, photonic systems can exhibit
local mean-field nonlinearities,57 arbitrarily tailorable geometry that
enables small system sizes,58,59 and non-Hermiticity both through
radiative losses as well as gain and absorption.60–63 Moreover, these
phenomena are central to many photonic devices seeking to lever-
age topological phenomena. For example, it can be advantageous to
reduce a device’s on-chip footprint, which necessitates understand-
ing finite size effects, or make surface emitting light sources, which
requires the inclusion of radiative losses to a gapless medium. Unfor-
tunately, photonic systems exhibiting these phenomena are ill-suited
to be classified using topological band theory, either because the
effects are local, or the system is small, such that a band theoretic
description is not applicable; or because the full photonic system,
including the radiative environment, lacks a spectral gap so band
theory would not predict any global topological protection.

In the past few years, a topological classification frame-
work based on the system’s spectral localizer has emerged,64–66

which is able to identify photonic and material topology in real-
istic systems67,68 regardless of whether a system has radiative
boundaries69,70 or local nonlinearities.71 This framework provides a
position-space picture of topology, yielding spatially resolved local
topological markers and a local measure of topological protection.
As such, the spectral localizer framework offers the possibility of
aiding in the advancement of the field of topological photonics as
it explores nonlinearities and finite system-size effects. However, the
spectral localizer and its associated local markers are rooted in the
mathematics of C∗-algebras and cannot be expressed in the theo-
ries of geometry and vector bundles that are traditionally used to
describe material topology. As such, the relevant formulas for using
the spectral localizer framework initially appear quite foreign and do
not suggest an immediate physical interpretation despite their util-
ity. Moreover, the development of the spectral localizer framework
is spread out over the physics and mathematics literature, yielding
a daunting task for anyone interested in advancing its underlying
theory or making use of the approach.

In this tutorial, we provide a physically motivated descrip-
tion of the spectral localizer framework and show examples of
its use across a variety of different classes of topology, including
those from the Altland–Zirnbauer classification72–74 and those of
crystalline origin. In doing so, we show both how this framework
provides quantitative predictions of a system’s topological robust-
ness and how bulk–boundary correspondence manifests. As part
of this tutorial, we also introduce two main mathematical topics
key to the spectral localizer: multi-operator pseudospectral methods
and numerical K-theory. Multi-operator pseudospectral methods

are an approach to finding approximate joint eigenvectors for non-
commuting operators, and these methods form the basis for under-
standing bulk–boundary correspondence in the spectral localizer
framework, although they have utility beyond the study of topolog-
ical materials. Numerical K-theory is the study of deriving formula
for topological invariants that yield efficient computational imple-
mentations; the local markers calculated using the spectral localizer
are an example of numerical K-theory. Looking forward, we hope
that this tutorial provides an approachable on-ramp for members of
both the physics and mathematics communities to use the spectral
localizer framework to classify topological systems.

A. Preliminaries and terminology
Overall, this tutorial assumes that the reader has some familiar-

ity with the study of topological physics, but makes no assumptions
on the reader’s mathematical background beyond a standard intro-
duction to linear algebra and the usual facts about linear operators
and Hilbert spaces used in modern physics. Proofs for many math-
ematical details are instead provided in the associated references.
The only exception to this assumption is in the self-contained
Sec. VI, where some of the C∗-algebraic underpinnings of the spec-
tral localizer framework are presented in a form for a reader with a
mathematically oriented background.

There are also two overarching terminology issues that arise in
the study of topological photonics. First, this tutorial uses the phrase
material topology, or variants of this, to refer to the possible topo-
logical behavior of any natural or artificial material, regardless of
whether it is comprised of atoms, molecules, artificial atoms, or any
other form of decoration that serves as a change in a system’s spa-
tial potential. Second, this tutorial will use the condensed matter
physics terminology of a system’s occupied states or bands to refer
to those states or bands of a system whose eigenenergies are less
than some chosen energy of interest. Of course, in natural materials
whose topology arises in their many-body electron wave function,
the energy of interest is the Fermi energy and all the (single par-
ticle) states with energies less than this are necessarily occupied at
zero temperature. In contrast, in photonic systems, a structure’s
topological phenomena can be observed by exciting the system at
a single frequency, without carefully populating the system at other
frequencies. Indeed, as photons do not directly interact, their sys-
tem Hamiltonians are linear (for linear materials) and do not change
based on the system’s occupation. Thus, a photonic system may
exhibit several disparate spectral ranges with different non-trivial
topologies, any of which may be experimentally accessible. Never-
theless, as many formulas for topological invariants at a given energy
E are defined in terms of a system’s states ∣ψm⟩ with Em ≤ E, it is
useful to retain terminology that refers to this set of lower-energy
states.

B. Structure of the tutorial
In Sec. II, we provide a brief review of topological band the-

ory and related position-space topological invariants. In Sec. III, we
first provide an intuitive picture for building up the spectral localizer
framework, including its local markers and measure of protection.
This section then provides a set of general definitions for the frame-
work and provides a number of examples across a variety of different
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classes of topology and system dimensions. In Sec. IV, we provide
full discussions of the hyper-parameter κ that appears in the spectral
localizer framework, as well as the manifestation of bulk–boundary
correspondence, and efficient numerical implementations through
numerical K-theory. In Sec. V, we show how the spectral localizer
framework can be applied to photonic systems and discuss some
of the challenges associated with considering systems described by
differential operators such as Maxwell’s equations. In Sec. VI, we
provide some self-contained comments on the mathematical back-
ground of the spectral localizer framework. Finally, in Sec. VII, we
provide some concluding remarks. Throughout the tutorial, we also
directly acknowledge open questions (marked as such) and other
areas that require further study.

II. BRIEF REVIEW OF TOPOLOGICAL
CLASSIFICATION THEORIES

In this section, we provide a very brief review of standard meth-
ods for classifying material topology: topological band theory, global
position-space invariants, and local topological markers. This review
is intended as a reminder, not a detailed introduction (instead see
Refs. 53,54 and 75,76), and is included so that similarities and differ-
ences of these methods with the spectral localizer framework can be
highlighted in later sections. As such, this brief review focuses solely
on how each framework identifies Chern materials (2D class A in
the Altland–Zirnbauer classification table72–74), as the distinctions
between these approaches are similar across every topological class.
Similarly, this section may also be safely skipped if a reader is already
familiar with, or uninterested in, this background.

A. Topological band theory
Traditionally, material topology is classified using topological

invariants defined in terms of quantities derived from a system’s
band structure, such as the Chern number,77 winding number,54

or multipole moment.78,79 Such band theory-based invariants are
only defined for materials that possess a bulk bandgap (i.e., insula-
tors), and these invariants can only change when a sufficiently strong
perturbation is added to the system that closes the bulk bandgap.
Thus, by definition, standard band theoretic topological invariants
are global properties of a crystalline material, as they assume the
material is infinite and periodic so that Bloch’s theorem can be
applied. Materials possessing non-trivial bulk topological invari-
ants necessarily exhibit associated boundary-localized states, whose
appearance is guaranteed by bulk–boundary correspondence.80–82

A 2D material’s Chern number CE for an energy E in a specified
spectral gap can be found from its Bloch eigenstates ∣ψmk⟩ = eik⋅r

∣umk⟩

as

CE =
1

2π

Mocc

∑
m=1
∫

BZ
i∇k × ⟨umk∣∇k∣umk⟩d

2k ∈ Z. (1)

Here, ∣ψmk⟩ is an eigenstate of the system’s Bloch-periodic Hamil-
tonian at wavevector k and is a part of the mth band; Mocc is
the number of occupied bands below the spectral gap containing
E; and the integral is taken over the entire first Brillouin zone.
By directly specifying the energy in Eq. (1), we are emphasizing a
crucial difference between topological materials as they appear in
condensed matter physics and photonics: There is generally only

a single relevant spectral gap in electronic insulators, i.e., at the
Fermi energy, whereas a photonic material can generally be excited
at any frequency and may exhibit multiple bulk bandgaps that can
each possess a different topological invariant. Finally, as the topo-
logical protection predicted by band theory is given by the size of
the bulk bandgap surrounding E, topological band theory cannot be
meaningfully applied to E chosen in the spectral extent of the bulk
bands.

B. Global position-space invariants
It is also possible to classify material topology using a

system’s position-space description, rather than its momentum-
space description. Heuristically, such an approach must be possible,
as the two descriptions are related by a Fourier transform, and
Fourier transforms neither add nor remove information,83 they sim-
ply rearrange it. Thus, the aspects of a crystalline material that give
rise to non-trivial topology, as determined by topological band the-
ory, must also be detectable using invariants that leverage a system’s
position-space Hamiltonian H rather than its Bloch periodic Hamil-
tonian H(k). In general, there are two different approaches to
classifying material topology in position space: global invariants and
local markers. Global position-space invariants always make use of a
system Hamiltonian with periodic boundary conditions (PBC), but
this Hamiltonian represents a large volume of the material rather
than a single unit cell under Bloch periodic boundary conditions
as is used by topological band theory. Theories of local topological
markers can be constructed using either systems with open bound-
ary conditions (OBC) or PBC, and classify the system’s topology at a
chosen location.

The canonical example of a global position-space invariant is
the Bott index,84

BottE = Re[
1

2πi
Tr (log (UXUY U†

XU†
Y))] ∈ Z, (2)

which identifies the same topological phenomena as the Chern
number. Here, E is again assumed to be in a spectral gap, and

UX = Ψ†
occe

2πi
lx

XΨocc, (3a)

UY = Ψ†
occe

2πi
ly

YΨocc, (3b)

are the periodic (Resta) position operators85 written in the subspace
of the system’s occupied states with energies below the spectral gap
at E; X and Y are the standard (non-periodic) single-particle position
operators; and lx and ly are the lengths of the system in the in-
plane directions. In other words, Ψocc = [∣ψ1⟩, . . . , ∣ψm⟩, . . . , ∣ψM⟩],
with H∣ψm⟩ = Em∣ψm⟩ and Em < E, i.e.,Ψocc is the rectangular matrix
whose columns are the eigenstates of the large, periodic Hamilto-
nian with energies below the chosen spectral gap. Since the discovery
of the Bott index, related Bott-like indices have been subsequently
developed for a broad range of different classes of topology.86–88

There are also other frameworks for global position-space invariants
that were discovered at the about same time as the Bott index and
take a very different approach.89

When calculating a periodic material’s topology using Eq. (2),
the size of H that is typically required (before reaching the periodic
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boundary condition) to guarantee accurate classification is related
to ensuring that the material’s topological band inversion can be
resolved. In other words, a finite H with PBC is sampling wavevector
space every δkj = 2π/lj, where lj is the length of the system in the jth
direction, so lj must be large enough to ensure the region of wavevec-
tors where the bands have inverted90 is sufficiently sampled by the
Bott index. Thus, heuristically, the Bott index is trading repeated cal-
culations of the Bloch Hamiltonian H(k)’s spectrum and eigenstates
at different k that are required to perform the full integral in Eq. (1)
with a single calculation of the spectrum and eigenstates of the larger
H. In addition, the matrices UX and UY are generally dense.

C. Local topological markers
In contrast to topological band theory and global position-

space invariants, local topological markers are calculated at a spec-
ified position x, as well as a specified energy. Thus, a non-uniform
system’s local markers can vary across the system, indicating regions
with different material topology. As such, theories of local mark-
ers can be applied to aperiodic materials, such as quasicrystals91–94

and amorphous structures,95,96 as well as disordered systems or
heterostructures,97 without alteration. The first local marker was
derived by Kitaev in 2006,98 and Bianco and Resta produced a sem-
inal study on the topic in 2011.99 Both of these initial local markers
identify Chern topology in finite systems with open boundaries, but
a variety of local markers for different classes of topology have been
subsequently derived.100–116

Kitaev’s local Chern marker originates from considering spec-
tral flow in a unitary matrix98 and can be understood as determining
the system’s response to a point-like magnetic field at the specified
position x.95 To do so, the Kitaev marker partitions a system into
three spatial regions, typically labeled A, B, and C with positive ori-
entation, that all touch at x, as shown in Fig. 1(a). This local Chern
marker is calculated through the flow of the system’s projector across
the three regions,

ν(x,E)(A, B, C) = −12πi∑
xj ∈A
∑

xk ∈B
∑

xl ∈C
(PjkPklPlj − PjlPlkPkj), (4)

in which the system’s protector onto its states with Em < E is

P = ∑
Em<E
∣ψm⟩⟨ψm∣, (5)

whose elements for a finite system are then

Pjk = ∑
Em<E
⟨xj ∣ψm⟩⟨ψm∣xk⟩, (6)

FIG. 1. Schematic of the three regions used in the evaluation of the Kitaev local
Chern marker in Eq. (4) (a) and the disk used by the Bianco-Resta local Chern
marker in Eq. (8) (b).

where ∣ψm⟩ are eigenstates of the finite Hamiltonian with open
boundaries and ∣xj⟩ are position eigenstates localized entirely on
site j. It should be noted that the sign of Eq. (4) is flipped relative
to the original definition as we are reviewing the result that uses
the standard projector to the system’s states below E.96 So long as
the three regions are sufficiently large, but do not extend to the
material’s boundary, ν(x,E)(A, B, C) is approximately an integer and
for crystalline systems with x chosen within the material bulk is
approximately equal to Eq. (1). If the regions are instead chosen to
include the material’s boundary, ν(x,E) = 0.98 In addition, Eq. (4) is
approximately invariant under changing the boundaries of the three
regions for the same x, so long as the regions remain sufficiently large
and positively oriented.

Bianco and Resta’s local Chern marker for 2D systems can be
understood as the Fourier transform of Eq. (1) and subsequently
localized to a large-but-finite region of a material.99 This marker can
be expressed in terms of the system’s projectors to both those states
below and above the choice of E,

Q = 1 − P (7)

as91,94,117

C(x,E)(D) = −
4π
AD
∑

xi ∈D
Im
⎡
⎢
⎢
⎢
⎢
⎣

∑
j
⟨xi∣xQ∣xj⟩⟨xj ∣yP∣xi⟩

⎤
⎥
⎥
⎥
⎥
⎦

, (8)

in which

⟨xi∣xQ∣xj⟩ =∑
k

QikxkPkj , (9a)

⟨xj ∣yP∣xi⟩ =∑
k

PjkykQki. (9b)

Here, 1 is the identity, and the local Chern marker is determined by
integrating over a disk D with area AD and center x, with x = (x, y);
see Fig. 1(b). Similar to Eq. (4), for crystalline materials, C(x,E)(D)
converges to CE from Eq. (1) as the radius of D increases, subject
again to the same caveat that the disk does not contain any portion
of the material’s boundary. If D instead includes the full finite system
with open boundaries, C(x,E)(D) = 0.99

Despite their different formulations, the Kitaev marker and the
Bianco-Resta marker both exhibit similar properties. Unlike band
theoretic invariants or global position-space invariants, neither are
guaranteed to be integers for finite choices of integration areas [i.e.,
A, B, and C for Eq. (4) or D for Eq. (8)], although both converge
to the material’s Chern number as the integration area is increased.
Moreover, both local markers, as well as the Bott index, typically
involve calculating all of a system’s eigenstates with energies below
E, which can be numerically expensive given that these formulations
require using Hamiltonians that represent large volumes of material.
In some cases, it is possible to circumvent finding a system’s states
through the kernel polynomial method to achieve more efficient
algorithms,118 although this approach’s efficiency gains decrease as
the bulk spectral gap decreases. Finally, none come equipped with
an independent measure of the system’s topological protection and
instead default to defining this protection in terms of the width of
the relevant spectral gap.
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III. INTRODUCTION TO THE SPECTRAL LOCALIZER
FRAMEWORK

The spectral localizer framework can be thought of as a math-
ematical probe for understanding a material’s properties near the
probe’s location, as shown in Fig. 2. To classify material topol-
ogy, the framework yields a constellation of local markers that
can identify a broad range of material topology, including all ten
Altland-Zirnbauer classes in every physical dimension,64–66 crys-
talline topology,68 Weyl semimetals,119 and some forms of non-
Hermitian topology.120–122 In addition, the framework provides a
quantitative measure of topological protection. In contrast to other
theories of local markers, the spectral localizer framework’s markers
are guaranteed to be integer valued, although the theory still requires
a choice of hyper-parameter that plays a similar role to the choice
of integration area required for the Kitaev and Bianco-Resta mark-
ers (see Sec. IV A). Computationally, a key property of the spectral
localizer framework is that it does not require finding a system’s
eigenstates, nor make use of a system’s projector onto an occupied
subspace and thus can leverage significant numerical speedups using
matrix factorization techniques (see Sec. IV D). The theory was orig-
inally discovered by Loring in 2015,64 with substantial subsequent
mathematical developments by Loring and Schulz-Baldes.65

In the remainder of this section, we first provide an argument
for how the spectral localizer framework classifies Chern topology
for 2D materials based on an analysis of the position-space behavior
of atomic limits and discuss how a measure of topological protection
naturally appears. In Sec. III C, we provide the general definition
of the spectral localizer and discuss how it can classify topology in
other symmetry classes. Later sections give further discussion on
how the spectral localizer framework is applied to odd-dimensional
systems, as well as how the framework can be applied to classify
crystalline topology and higher-order topology. Finally, Sec. III G
examines how the spectral localizer framework is generalized to the
thermodynamic limit.

FIG. 2. Schematic depiction of the spectral localizer probing a photonic metasur-
face at some location and outputting information about the material’s properties at
that location.

A. Intuitive picture of the spectral localizer
framework for identifying 2D Chern materials

Before proceeding to a more formal introduction, here we begin
by introducing the spectral localizer framework from a ground-up
perspective for identifying Chern topology in 2D materials. The goal
is to provide a complete intuitive picture of this framework, while
pushing some details to later sections. Although there are different
ways to understand why the spectral localizer framework can suc-
cessfully classify material topology, as shown in Sec. VI, this section
introduces the spectral localizer framework as a method for diag-
nosing whether a given system can be connected to an atomic limit
without closing a spectral gap or violating a relevant symmetry.

An important concept in the modern study of topological
materials is the idea of an atomic limit—the limit in which the con-
stituent elements of a material are decoupled into individual atoms,
molecules, or meta-atoms so that the system is simply a collection
of those isolated elements. A crystal in an atomic limit exhibits a
band structure that is completely flat.73 Atomic limits also possess
a complete basis of localized Wannier functions123 that exhibit all
of the same symmetries as the underlying system. Atomic limits
are intimately connected to material topology because topologically
non-trivial systems either do not possess a localized Wannier basis
or their localized Wannier basis does not obey all of the symme-
tries of the original material. For example, 2D systems with non-zero
Chern numbers do not possess a localized Wannier basis,124 which,
in crystalline insulators, is a direct consequence of the fact that such
systems have an obstruction that prohibits the choice of a smooth
gauge for the Bloch wavefunctions across the (first) Brillouin zone.
Similarly, electronic systems that exhibit the quantum spin Hall
effect, a form of topology protected by fermionic time-reversal sym-
metry, possess a localized Wannier basis, but this basis does not obey
fermionic time-reversal symmetry.125

Crucially, these statements are bijections, e.g., if a 2D material
is found to not possess a localized Wannier basis, it necessarily has
a non-zero Chern number. If a material does not possess a local-
ized Wannier basis that exhibits all the same symmetries as the
original system, the system is generally non-trivial with respect to
a class of topology protected by those symmetries missing from the
Wannier basis. In either case, the material cannot be continued to
an atomic limit without breaking a symmetry or closing a spectral
gap (which would allow the system to change its topology). Here,
by “continued to an atomic limit,” one is asking whether a path of
matrices Hτ with τ ∈ [0, 1] can be found, with H0 = H being the
original system’s Hamiltonian and H1 = H(AL) being an atomic limit,
such that every Hτ possesses a bulk spectral gap at the chosen energy
E, remains somewhat local73 (i.e., sites separated by a sufficiently
large distance are not coupled), and obeys the same symmetries as
H (e.g., if a system is chiral symmetric with HΠ = −ΠH, then for
every τ, HτΠ = −ΠHτ). As such, it is possible to flip the paradigm for
identifying topological systems: rather than finding materials, calcu-
lating their topological invariants, and inferring the existence and
properties of the system’s localized Wannier basis; one can instead
choose a material, ask if it exhibits a localized Wannier basis that
obeys all the same symmetries as the original material and infer
its topology. Indeed, the recently developed framework for classi-
fying crystalline materials of topological quantum chemistry126–133

takes precisely this approach, using a material’s band structure to
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understand whether it can be continued to an atomic limit and then
inferring its topological properties.

However, it is also possible to ascertain whether a system can be
continued to an atomic limit directly from position-space descrip-
tion, rather than through its band structure or Wannier basis. The
key mathematical observation for this shift in perspective follows
from the definition of an atomic limit: since all of an atomic limit’s
constituent atoms or molecules are decoupled, the system does
not possess any kinetic energy associated with this decoration-to-
decoration coupling; moreover, the spacing between adjacent atoms
or molecules is assumed to be large compared to the spacing between
the elements within a single molecule. Thus, the Hamiltonian of an
atomic limit commutes with its associated position operators X(AL)

j ,

i.e., [H(AL), X(AL)
j ] = 0 ∀ j; see Fig. 3. As such, from a position-

space perspective, the question of whether a given system can be
continued to an atomic limit is equivalent to asking whether the
non-commuting Hamiltonian H and position operators Xj of the
original system, [H, Xj] ≠ 0, can nevertheless be path continued via
some set of Hτ and Xj,τ to be commuting while preserving all of the

relevant symmetries and the relevant bulk spectral gap. It should be
noted that in this position-space picture, the effect of symmetries
must be considered on both Hτ and Xj,τ ; while local symmetries such
as time-reversal trivially commute with Xj,τ , crystalline symmetries
might not, and the path of Xj,τ must preserve whatever the original
relationship is. In addition, at this juncture, we are being purpose-
fully vague about how to guarantee that the position-space path
preserves the relevant bulk spectral gap; for a finite system with OBC,
edge effects, topological or otherwise, as well as internal defects may
result in H not exhibiting any global spectral gap even if its ordered
crystalline counterpart exhibits bulk bandgaps. Exactly what spec-
tral gap must be preserved by Hτ and Xj,τ will be made rigorous in
Sec. III B.

Having reduced the question of classifying material topology
to determining whether a set of non-commuting matrices can be
appropriately path-continued to be commuting, a method must be
argued for actually performing this determination. For a 2D Chern
insulator, we can understand whether a given material can be path
continued to the atomic limit using two theorems from the math-
ematics literature. The first theorem provides a way to identify the

FIG. 3. Schematic representation of a 2D tight-binding lattice with rectangular symmetry (a), as well as two of the possible atomic limits that this system might be connected
to [(b), (c)]. For each lattice, we illustrate the form that their tight-binding Hamiltonian and associated position operators take.
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homotopy class of an invertible Hermitian matrix, i.e., it provides a
method for identifying whether two invertible Hermitian matrices
can be path connected.

Theorem A. Two n-by-n invertible Hermitian matrices L and
L′ can be connected by a path of invertible Hermitian matrices if and
only if sig[L] = sig[L′], where sig[L] is the signature of L, its num-
ber of positive eigenvalues minus its number of negative eigenvalues.
(See Appendix for proof.)

While this theorem uses language that is not standard for pho-
tonics, the result is quite intuitive when depicted graphically: any
attempt to connect the spectra of two invertible Hermitian matrices
with different signatures will necessarily force at least one eigenvalue
in the connecting path of Hermitian matrices Lτ to be 0, at which
point that Lτ is not invertible, as shown in Fig. 4. With knowledge
of what matrices can be connected, the second theorem then defines
which of these homotopy classes contain atomic limits.

Theorem (Choi, 1988,134 Lemma 4). Given two N-by-N
Hermitian matrices R and S, if [R, S] = 0, then

sig[
R S
S†
−R
] = 0. (10)

While it is not immediately obvious in Choi’s notation how this
theorem is relevant, a 2D system’s physical behavior can be recov-
ered by substituting R→ H and S→ κ(X − iY), where κ > 0 is a
scaling coefficient that ensures consistent units. (A complete discus-
sion of κ is provided in Sec. IV A.) Then, the theorem’s requirement
that R and S commute becomes a requirement on the Hamilto-
nian commuting with the position matrices. In other words, Choi’s
theorem states that for an atomic limit,

sig
⎡
⎢
⎢
⎢
⎣

H(AL) κ(X(AL)
− iY(AL)

)

κ(X(AL)
+ iY(AL)

) −H(AL)
⎤
⎥
⎥
⎥
⎦
= 0. (11)

As Choi’s theorem guarantees that a specific invertible Hermi-
tian matrix comprised of an atomic limit’s Hamiltonian and position
operators will have zero signature, and the first theorem tells us
that invertible Hermitian matrices with the same signature have the
potential to be path-connected, together, they suggest an approach

FIG. 4. (a) Schematic showing how L and L′ belong to the same homotopy class
because they have the same signature and can thus be connected by a path of
invertible matrices {Lτ}. An example homotopy-preserving path is indicated by the
red dotted lines. (b) Similar, but now sig[L] ≠ sig[L′], so any attempt to construct
a path of Hermitian matrices {Lτ} to connect them must become non-invertible
somewhere, i.e., there will be some τ for which 0 ∈ spec[Lτ]. Here, spec[M] is
the spectrum of M.

to classifying topology using a system’s position-space description.
Through analogy with Eq. (11), the 2D spectral localizer is defined
as

L(2D)
(x,E)(X, Y , H)

= [
H − E1 κ(X − x1) − iκ(Y − y1)

κ(X − x1) + iκ(Y − y1) −(H − E1)
]. (12)

Relative to Eq. (11), Eq. (12) shifts the system’s energy and position
spectra to be centered around a chosen (x, E). Mathematically, these
offsets do not change the behavior of atomic limits; if [A, B] = 0,
then [A − a1, B − b1] = 0. Physically, re-centering the system’s oper-
ators to (x, E) is necessary because different physical or spectral
locations in a system can exhibit different topologies. Indeed, Choi’s
requirement that the matrices be finite means that H, X, and Y in
Eq. (12) describe a finite system with open boundaries and bounded
energy spectra, so the resulting framework must be sensitive to these
physical boundaries and the choice of energy. (It should be noted
that, at this point, we have not provided a sufficient argument to
discount the possibility of Choi’s theorem applying to finite sys-
tems with PBC, but this possibility is precluded by the need to
establish a bulk–boundary correspondence for the spectral localizer
framework; see Sec. IV C.)

Finally, a system’s local Chern marker can be defined using the
2D spectral localizer as

CL
(x,E)(X, Y , H) =

1
2

sig[L(2D)
(x,E)(X, Y , H)] ∈ Z. (13)

In other words, if at some choice (x, E) the 2D spectral localizer has
a zero signature, the system’s non-commuting H − E1 and X − x1,
Y − y1 can nevertheless be locally path continued to be commuting,
i.e., to be in an atomic limit. As no symmetries have been speci-
fied, Eq. (13) is classifying material topology without respect to any
symmetries, i.e., whether it is a Chern material (2D Class A). More-
over, for semi-infinite crystalline systems with bulk bandgaps, CL

(x,E)
is provably equal to the global Chern number at the same energy,
CE from Eq. (1) 65 (up to a sign ambiguity, see Sec. III C). Finally,
in Eq. (13), the factor of 1/2 corrects for the fact that when one
eigenvalue of a matrix switches sign, the matrix’s signature changes
by 2.

Overall, the argument presented in this section shows how the
2D spectral localizer can be used to classify whether a material at
a given choice of (x, E) exhibits non-trivial local Chern topology
by understanding that if a system can locally be path continued
to an atomic limit. In addition, the calculation of a system’s local
Chern marker can be computationally quite efficient and need not
involve finding any eigenvalues of L(2D)

(x,E) by taking advantage of
sparse matrix factorization techniques; see Sec. IV D.

B. Defining the local gap
In Sec. III A, we argued that for a system to be topologically

trivial, the path of matrices Hτ and Xj,τ connecting a given system
to an atomic limit need to both respect all of the original system’s
(relevant) symmetries and maintain a spectral gap. Then, we stated
that the 2D spectral localizer must be applied to finite systems with
OBC. However, this seems to present a problem: the Hamiltonian
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of a topological system with OBC will not generally exhibit a spec-
tral gap; such a gap will instead by populated by boundary-localized
states. Moreover, even topologically trivial systems may exhibit edge
effects or possess internal defects that preclude its Hamiltonian from
exhibiting a spectral gap.

Instead, to see what gap must be preserved by the path of matri-
ces Hτ and Xj,τ , note that, by definition, CL

(x,E) cannot change its
value unless at least one of the eigenvalues of the spectral localizer
crosses 0. Thus, consider the absolute value of the eigenvalue of L(x,E)
that is closest to zero,

μC
(x,E)(X, H) = min [∣spec(L(x,E)(X, H))∣], (14)

where X = (X1, . . . , Xd) for a d dimensional system and spec[M]
is the spectrum of M. Here, the superscript C denotes Clifford, as
{(x, E)∣μC

(x,E) ≤ ε} defines the Clifford ε-pseudospectrum of (X, H);
see Sec. IV B. It should be noted that, as L(x,E) has units of energy,
so does μC

(x,E). So long as μC
(x,E)(Xτ , Hτ) > 0 along the entire path τ,

the local Chern marker at (x, E) cannot change. As such, the spectral
gap that must be preserved to understand whether a system can be
path connected to an atomic limit is that of L(x,E)(Xτ , Hτ), not Hτ or
Xj,τ individually.

However, the argument that a system’s local topology is pre-
served so long as μC

(x,E) > 0 has much broader implications for the
spectral localizer framework: it defines a local measure of topolog-
ical protection. As L(x,E)(X, H) is Hermitian, its eigenvalues λ(H)j
are guaranteed to be real, which means that they can be ordered,
such that λ(H)j−1 ≤ λ

(H)
j ∀ j. The same is true of the spectral localizer

L(x,E)(X, H + δH) for the system with some perturbation δH, i.e.,
λ(H+δH)

j−1 ≤ λ(H+δH)
j ∀ j. As the eigenvalues of each Hermitian matrix

are ordered and can be paired up, we can find the distance each
has moved for any perturbation, and Weyl’s inequality guarantees
that this distance is bounded by the norm of the difference in the
operators,135,136

∣λ(H+δH)
j − λ(H)j ∣ ≤ ∥L(x,E)(X, H + δH) − L(x,E)(X, H)∥. (15)

Here, ∥M∥ denotes the largest singular value of M, i.e., the L2

matrix norm. In other words, the spectrum of the spectral localizer
is Lipschitz continuous with coefficient 1; see Ref. 64, Lemma 7.1.
Moreover, due to the structure of the spectral localizer and the fact
that the perturbation is only in the system’s Hamiltonian,

∥L(x,E)(X, H + δH) − L(x,E)(X, H)∥ = ∥δH∥. (16)

Now, let the perturbation be strong enough to reach a local
topological phase transition, i.e., μC

(x,E)(X, H + δH) = 0. As the
eigenvalues of the spectral localizer are ordered, the shortest distance
that an eigenvalue of the original system needs to move to reach
such a phase transition point is μC

(x,E)(X, H). However, by Eq. (15),
this means that the strength of the perturbation necessary to reach a
phase transition point has a lower bound,

∥δH∥ ≥ μC
(x,E)(X, H). (17)

Thus, any perturbation with a norm less than μC
(x,E)(X, H) cannot

change the system’s local topology. Altogether, this means that μC
(x,E)

provides a rigorous definition of a local gap; large values of μC
(x,E)

relative to the energy scale of a perturbation guarantee that any local
topological phase is robust; see Sec. IV B. Finally, a similar argument
shows that the size of μC

(x,E) also puts a bound on how far away one
needs to look in the (x, E) space to have the possibility of a local
change in topology, as changes in (x, E) can only potentially close
μC
(x,E) so quickly.

Generally, when using the spectral localizer to classify the
topology of a periodic systems with a bulk bandgap, the topologi-
cal protection predicted by μC

(x,E) for x chosen in a system’s bulk and
E in its spectral gap is quantitatively similar to the topological pro-
tection predicted by its bandgap.67 In particular, if a system’s bulk
spectral gap is between a lower energy El and an upper energy Eu,
μC
(x,E) is typically within ∼10% of min[E − El, Eu − E]. However, for

systems or heterostructures lacking bulk spectral gaps, the spectral
localizer framework can still predict non-zero values for topological
protection.69,137,138

To summarize the picture of the spectral localizer framework,
for a given system defined by H and X, one can first construct the
spectral localizer and then iterate over different choices of position
and energy to map out the system’s local topology and correspond-
ing topological protection. As L(x,E) is usually sparse, this iterative
process can be made quite efficient; see Sec. IV D for more details.
An example application of the spectral localizer framework to a
tight-binding topological heterostructure is shown in Fig. 5. Here,
a finite region of a Haldane lattice139 in a topological phase is
embedded in a trivial insulator and, ultimately, surrounded by open
boundaries. The density of states and local density of states (LDOS)
confirm that the heterostructure exhibits bulk spectral gap that is
populated by chiral edge states localized to the interface between
the two constituent materials, as shown in Figs. 5(b) and 5(c). Fur-
thermore, at the material interface, the spectral localizer framework
shows that the local gap μC

(x,E) → 0 so that the local Chern marker
can change its value and identify the inner material as topologi-
cal; see Figs. 5(d) and 5(e). The spectrum of the spectral localizer
spec[L(x,E)] shows a single eigenvalue crossing 0 that captures the
change in the system’s local topology as (x, E) is varied across the
heterostructure with E in the bulk spectral gap; see Fig. 5(f). This
flow of the eigenvalue is called the spectral flow of L(x,E). Finally, this
example also demonstrates that (x, E) can be chosen to be any real
numbers, with the edges of the plots showing values for x outside of
the heterostructure.

C. General definition of the spectral localizer
in arbitrary dimensions

Having demonstrated how the spectral localizer framework can
be applied to classify 2D Chern materials, we now generalize the
definition of the spectral localizer to an arbitrary number of phys-
ical dimensions and briefly discuss the structure of the other local
markers for classifying other forms of topology that can be defined
using L(x,E). To do so, it should first be noted that for a 2D system,
Eq. (12) can be rewritten using the Kronecker product and the Pauli
matrices σx,y,z as

L(2D)
(x,E)(X, Y , H) = κ(X − x1)⊗ σx + κ(Y − y1)⊗ σy

+ (H − E1)⊗ σz. (18)
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FIG. 5. (a) Schematic of a heterostructure consisting of a Haldane lattice embed-
ded within a massive graphene lattice. Both lattices have a nearest neighbor
coupling strength of t. The Haldane lattice is massless and has directional
next-nearest neighbor couplings t2e±iϕ with t2 = 0.5t and ϕ = π/2. The massive
graphene lattice has on-site energies ±M with M = t. (b) Density of states of this
finite heterostructure. [(c)–(e)] LDOS (c), local gap (d), and local Chern marker
(e) all shown at E = 0 and on the same spatial scale as panel (a). [(f), (g), (j)]
Spectrum of the spectral localizer (f), local gap (g), and local Chern marker (h) at
E = 0 as x is varied along the green line path shown in panel (a). Simulations use
κ = 0.25(t/a), where a is the site-to-site spacing. For the LDOS, each lattice site
is represented as a 2D Gaussian with width r = 0.3a.

This form hints at the correct structure of the spectral local-
izer for an arbitrary number of physical dimensions. Indeed, for
a d-dimensional system, the spectral localizer is defined using a
sufficiently large irreducible Clifford representation Γj as

L(x,E)(X, H) =
d

∑
j=1

κ(Xj − xj1)⊗ Γj + (H − E1)⊗ Γd+1. (19)

To form a Clifford representation, Γj must satisfy the following set
of relations:

ΓjΓl = −ΓlΓj , (20a)

Γ2
j = 1, (20b)

Γj = Γ†
j , (20c)

where these must hold for all 1 ≤ j, l ≤ d + 1 with j ≠ l in the first
equation. Irreducibility is defined to mean that these Γj are not built
by stacking smaller Clifford representations. This precludes choos-

ing a Clifford representation, such as
⎡
⎢
⎢
⎢
⎢
⎣

σx 0

0 −σx

⎤
⎥
⎥
⎥
⎥
⎦

,
⎡
⎢
⎢
⎢
⎢
⎣

σy 0

0 −σy

⎤
⎥
⎥
⎥
⎥
⎦

, and

⎡
⎢
⎢
⎢
⎢
⎣

σz 0

0 −σz

⎤
⎥
⎥
⎥
⎥
⎦

that would yield a value of zero in the local Chern

marker formula in Eq. (13). Fortunately, we need only check that Γj

have size 2⌈d/2⌉ to guarantee irreducibility140 (where ⌈d/2⌉ denotes
the ceiling of d/2). As an example for a higher-dimensional sys-
tem, the 4D spectral localizer can be constructed using Γ1 = σx ⊗ σx,
Γ2 = σy ⊗ σx, Γ3 = σz ⊗ σx, Γ4 = 1⊗ σy, and Γ5 = 1⊗ σz , which are an
irreducible Clifford representation for d = 4. The first four of these
are an irreducible Clifford representation for d = 3. [It should be
noted that the four Dirac matrices do not form a representation of
Eq. (20) since one of the Dirac matrices squares to −1.]

Intuitively, the use of a Clifford representation in the spectral
localizer framework can be understood from the need to preserve the
“orthogonality” of the information present in the system’s Hamil-
tonian and position operators while still combining these operators
into a single L(x,E). This is akin to how the Pauli matrices form a com-
plete basis for all 2-by-2 Hermitian matrices with spectra centered at
0. Rigorously, underlying the need for a Clifford representation in
the spectral localizer framework lurks Clifford algebras; see Sec. VI.

The spectral localizer framework provides a complete set of
local markers for classifying any form of topology from the Altland-
Zirnbauer classes in any physical dimension. In Sec. III A, we
discussed how sig[L(2D)

(x,E)] identifies the underlying system’s Chern
topology as this local marker does not require specifying any system
symmetry. Similarly, the second Chern number of a 4D system in
Class A or AI can be found using a related invariant,140

1
2

sig[L(4D)
(x,E)(X1, X2, X3, X4, H)] ∈ Z. (21)

The spectral localizer can also identify topology that falls outside of
the Altland-Zirnbauer classification, such as material topology asso-
ciated with crystalline symmetries,68 as given in Sec. III E, Weyl
materials,119 and some forms of non-Hermitian topology.120–122

Many of the real Altland-Zirnbauer classes are inaccessible
in photonics, as they require local symmetries that do not appear
in photonic systems, such as fermionic time-reversal symmetry or
particle–hole symmetry. Nevertheless, to illustrate the structure of
these other local markers and demonstrate how they explicitly rely
upon the symmetry protecting the topology, we will briefly review
how the spectral localizer framework identifies the topology of two
real Altland-Zirnbauer classes that exhibit Z2 invariants. For exam-
ple, the spectral localizer framework can identify quantum spin Hall
materials (2D class AII), whose topology is protected by fermionic
time-reversal symmetry 𝒯 , using the local marker,64

SL
(x,E)(X, Y , H) = sign (Pf[iU†L(2D)′

(x,E) (X, Y , H)U]) ∈ Z2, (22)
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where

L(2D)′
(x,E) (X, Y , H) = κ(X − x1)⊗ σz + κ(Y − y1)⊗ σx

+ (H − E1)⊗ σy. (23)

Here, the local marker relies on the fact that 𝒯H = H𝒯 , which both
guarantees that there is a basis in which H is purely imaginary so
that L(2D)′

(x,E) is real, and that a unitary U exists such that iU†L(2D)′
(x,E) U

is skew-symmetric with a well-defined Pfaffian. If the sign of this
Pfaffian is positive, the material is locally trivial, and if negative,
the material is locally topological. (Rigorously, SL

(x,E) ∈ {1,−1} ≅ Z2,
but we are abusing notation and will simply state SL

(x,E) ∈ Z2 as the
isomorphism is trivial.) From the perspective of the path continu-
ation arguments discussed surrounding Theorem A and Fig. 4 in
Sec. III A, the path of matrices Lτ connecting the unitarily trans-
formed spectral localizers of two 𝒯 -symmetric systems must now
remain skew-symmetric for all τ. As such, the eigenvalues of Lτ can
only reach or cross 0 in pairs, so that sig[Lτ] = 0∀τ, but at these clos-
ings, the Pfaffian of Lτ might change sign, in which case the path
is not homotopy-preserving. Similarly, 2D class DIII systems also
exhibit a Z2 classification, and such a system’s local topology can be
found via64

sign (det [iW†
+L(2D)′
(x,E) (X, Y , H)W−]) ∈ Z2, (24)

where W+ and W− are again basis-dependent and constructed
through considering the system’s local symmetries.

Overall, there are only three different forms of the local
markers that are defined using the spectral localizer for the ten
Altland-Zirnbauer classes,

sig[ ∗ ] ∈ Z, (25a)

sign [Pf( ∗ )] ∈ Z2, (25b)

sign [det ( ∗ )] ∈ Z2, (25c)

where ∗ denotes some matrix based on the spectral localizer of
appropriate dimension. Heuristically, the forms of these local mark-
ers can be understood through simple consideration of the possible
structures of Hermitian matrices. As discussed in Sec. III A and
Fig. 4, an invertible Hermitian matrix’s signature is an invariant of
homotopy. However, a Hermitian matrix may possess an additional
structure that both forces its signature to be zero but also enables
classification with respect to so-called secondary invariants141–143

that are only meaningful when the primary invariant, i.e., the
matrix’s signature, is trivial. For example, a Hermitian matrix might
be purely imaginary, guaranteeing it to be skew-symmetric (i.e.,
AT
= −A), for which sign [Pf( ∗ )] distinguishes different homotopy

classes. Similarly, the Hermitian matrix might be real-symmetric
(i.e., AT

= A) and anti-commute with a Hermitian unitary matrix
(sometimes referred to as being odd with respect to a grading oper-
ator), in which case sign [det ( ∗ )] applied to an off-diagonal corner
of the Hermitian matrix distinguishes different homotopy classes.
See the Appendix for homotopy arguments for why these can be
non-trivial topological invariants.

Moreover, regardless of the specific form of any of the local
markers defined using the spectral localizer, all of these markers are
fundamentally connected to the spectrum of the spectral localizer
and cannot change their value without first closing the local gap,
μC
(x,E) = 0. Thus, Eq. (14) always provides the measure of topological

protection for any class of topology in the spectral localizer frame-
work. In addition, it has been proven that changing the irreducible
Clifford representation used in Eq. (19) does not alter the local gap;
see Ref. 140, Lemma 1.2, e.g., L(2D)

(x,E) and L(2D)′
(x,E) both yield the same

μC
(x,E).

Finally, we would like to be able to provide more guidance on
how to pick the irreducible Clifford representation for Eq. (19), but
this is currently an open topic. To illustrate the present difficulty,
consider the 2D spectral localizer defined using −σx, −σy, and −σz
instead of their positive counterparts. The negative Pauli matrices
still form an irreducible Clifford representation, but the spectrum
of the resulting spectral localizer will be multiplied by −1 relative
to the standard choice of 2D spectral localizer given by Eq. (12),
yielding a sign flip of the local Chern marker Eq. (13). Thus, the
spectral localizer framework always predicts the correct number of
chiral edge modes and is internally consistent for a given choice of
Clifford representation. However, the spectral localizer framework
can have a sign ambiguity when compared against other topological
frameworks. Open question: further study is necessary to understand
if there is an argument for constructively fixing the sign ambiguity,
i.e., without an appeal to other topological invariants.

D. Identifying topology in 1D chiral symmetric
systems using the spectral localizer framework

So far, this tutorial has only discussed the spectral localizer’s
application to even-dimensional systems. However, applying the
spectral localizer framework to odd-dimensional systems requires
a slight modification. The initial challenge is that an irreducible
Clifford representation for odd d is always a truncation of an irre-
ducible Clifford representation for d + 1. That extra matrix, Γd+2,
anti-commutes with the prior {Γ1, . . . , Γd+1} and so the spectral
localizer will be off-block diagonal in an appropriate basis. For
example, for a 1D system, we can generally use Γ1 = σx and Γ2 = σy
and so the spectral localizer is off-block diagonal,

L(1D)
(x,E)(X, H)

= [
0 κ(X − x1) − i(H − E1)

κ(X − x1) + i(H − E1) 0
]. (26)

The off-block diagonal form of the spectral localizer reveals the
fundamental challenge in odd dimensions: the two blocks essen-
tially contain opposite spectral information about the system, e.g.,
the signature of Eq. (26) is always zero. To remove this duplicate-
but-opposite information, the odd-dimensional local markers are
defined in terms of only one of these blocks. However, each block has
no particular structure, being neither Hermitian nor real. Instead, to
recover a Hermitian or real matrix whose homotopy can be classi-
fied using constructions such as Eq. (25), the system must exhibit a
unitary or anti-unitary symmetry that anti-commutes with at least
one of Xj or H. Indeed, this mathematical symmetry requirement
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is in agreement with the Altland-Zirnbauer classification, which
identifies odd-dimensional Class A systems as always being trivial.

For example, consider a 1D chiral symmetric system such as
the Su–Schrieffer–Heeger (SSH) model144 (1D class AIII) that is
described by a Hamiltonian and a single position operator. The local
winding number for such a system is

νL
x(X, H) =

1
2

sig[L̃(1D)
(x,0)(X, H)] ∈ Z, (27)

in which the associated symmetry reduced spectral localizer is

L̃(1D)
(x,E)(X, H) = [κ(X − x1) − i(H − E1)]Π. (28)

Here, Π is the chiral symmetry matrix, HΠ = −ΠH and XΠ = ΠX,
and the local marker is only defined at E = 0 as is expected for this
Altland-Zirnbauer class. It should be noted that although L̃(1D)

(x,E) is

generally non-Hermitian, at E = 0, L̃(1D)
(x,0) is Hermitian and thus has

a well-defined signature. A proof showing how systems with non-
trivial local winding numbers cannot be continued to an atomic limit
while preserving chiral symmetry can be found in Ref. 68, Sec. SII.

Altogether, through a judicious choice of elements of the Clif-
ford representation used for an odd-dimensional system, all the
necessary spectral information for defining local topological markers
is contained in a single off-diagonal block of the spectral localizer. As
always, the topological protection associated with these local mark-
ers is still given by Eq. (14), which is also equivalent to finding the
smallest singular value of the reduced spectral localizer. An exam-
ple of the spectral localizer framework applied to an SSH model
with chiral-preserving long-range couplings is shown in Fig. 6. Here,
the long-range couplings yield a local winding number of 2 in the
lattice’s interior bulk, and the spectral flow of L̃(1D)

(x,0) responsible for
this change in the local index is shown in Fig. 6(c).

E. Classifying crystalline topology
A key benefit of the spectral localizer framework is that it is

agnostic to the physical meaning of the matrices being used to con-
struct it and its associated local markers. In particular, this means
that if another system’s symmetry can be found that is outside
the standard Altland-Zirnbauer classes and yet exhibits equiva-
lent relations on the system’s Hamiltonian and position operators,
then the local marker for this symmetry-protected topology can be
immediately constructed.68

For example, for 1D systems with chiral symmetry (1D class
AIII), HΠ = −ΠH and XΠ = ΠX, where Π is the chiral operator;
the associated local marker is given by Eq. (27). Now, consider a
crystalline symmetry S for which HS = S H and XS = −S X, e.g.,
inversion symmetry. In such a case, the local topological marker
can be easily constructed by swapping the Hamiltonian and position
matrix H ↔ X and the chiral operator with the crystalline symmetry
Π↔ 𝒮 to define a local crystalline winding number,

ζL,S
E (X, H) =

1
2

sig[(H − E1 + iκX)S ]. (29)

The associated measure of topological protection of is still defined
by Eq. (14).

FIG. 6. (a) Schematic of an SSH lattice with chiral-preserving long-range couplings,
with v = t, w = 0.4t, and tLR = 2t. The simulated system contains 20 unit cells,
with a lattice constant of a and a site-to-site spacing of 0.5a. The system terminates
after a weak w coupling on both ends. (b) Density of states for this system. [(c)–(e)]
Spectrum of L̃(1D)

(x,0)Π (c), local gap (d), and local winding number (e) as x is varied

across the lattice. The simulations use κ = 0.5(t/a).

There are two subtleties associated with the crystalline winding
number. First, just as any topologically protected states in the SSH
model must exist at E = 0, the crystalline winding number identifies
states at x = 0, which is the center of the crystalline symmetry. Thus,
this class of markers fixes x and sweeps E to identify material topol-
ogy. Second, as the spectral localizer works with systems that possess
OBC, the relevant crystalline symmetry 𝒮 in Eq. (29) is a global
symmetry, not a single unit cell operator. Open question: it remains
an active area of research to explore whether the spectral local-
izer can be used to define topology with respect to single-unit-cell
versions of a system’s critical symmetries, rather than their global
counterparts.

An example of using the spectral localizer framework to clas-
sify crystalline topology is shown in Fig. 7, where we consider an
inversion-symmetric SSH model with a defect site at the center.
Thus, for this system, Hℐ = ℐH and Xℐ = −ℐX, where ℐ is the
inversion operator. The observation that ζL,ℐ

E is taking half-integer
values is not a mistake, but is instead a direct consequence of the fact
that this system has an odd number of sites in conjunction with the
1/2 in Eq. (29). These half-integers are not a problem; as differences
in the local marker at different E are still integer valued, the spectral
flow of (H − E1 + iκX)ℐ across this range of E is the same inte-
ger, and this integer corresponds to the number of inversion-center
localized topological states exist. (See Sec. IV C for a discussion of
bulk–boundary correspondence.)
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FIG. 7. (a) Schematic of an inversion-symmetric SSH lattice with a defect site at the
center, with v = t and w = 0.4t. The simulated system contains 40 unit cells and
a single defect at the center (i.e., 81 sites total) connected to the remainder of the
lattice with weak w couplings, with a lattice constant of a and a site-to-site spacing
of 0.5a. The system terminates after a strong v coupling on both ends. (b) Density
of states for this system. [(c)–(e)] Spectrum of (H − E1 + iκX)S (c), local gap
(d), and local winding number (e) as E is varied across the lattice’s spectrum. The
simulations use κ = 0.5(t/a).

F. Dimensional reduction and higher-order topology
The spectral localizer framework can also dimensionally reduce

a system and consider its topology in a lower dimension. As such, the
framework can be used to identify higher-order topology,79,88,145–148

protected either by crystalline symmetry68 or by chiral symmetry.137

Mathematically, this dimensional reduction is achieved by simply
omitting one or more position operators from the spectral local-
izer and choosing a Clifford representation suitable for the effective
lower-dimensional system. In doing so, the full system is still used,
i.e., the Hamiltonian remains unchanged. Instead, this process is
projecting the system into the lower-dimensional space and sim-
ply forgetting about their position in the omitted dimension(s).
Physically, changes in a system’s local topology can only occur at
locations in position-energy space, where μC

(x,E) = 0, which also guar-
antees that the system exhibits a nearby states; see Sec. IV C. Thus,
by projecting the system into a suitable lower-dimensional space,
one can ensure that a path in (x, E) taken by the spectral localizer
always crosses a location where the local gap closes so the topology
can change, precluding the possibility of choosing a path that goes
around the local gap closure by omitting that dimension.

An example of using the spectral localizer to identify higher-
order topology in a 2D breathing honeycomb lattice25 is shown
in Fig. 8. The 2D breathing honeycomb lattice is chiral symmetric
(class AIII), but in 2D, this local symmetry class is always trivial.
Instead, this lattice’s higher-order topology and associated corner-
localized states can be identified by projecting the lattice into a lower
dimensional space and using the local winding number defined in

Eq. (27). In Figs. 8(d)–8(g), the lattice is projected onto the x axis.
As x is varied from negative to positive for E = 0, the local wind-
ing number changes four times at positions that correspond to the
projected locations of the system’s six corners onto the x axis. The
first and last changes in νL

x(X, H) are by ±1, as these x locations
intersect a single lattice corner. The middle two changes in the local
marker are by ±2, as the path is crossing two projected corners
simultaneously. Crucially, because the corresponding topological
corner-localized zero-energy modes have the same chiral charge,
i.e., they predominantly have support on the same sublattice, their
combined contribution to the local winding number is ±2. In con-
trast, projecting the lattice instead onto the y axis yields a trivial local
marker for every choice of y; see Figs. 8(h)–8(k). Here, although the
local gap closes three times where the six corners are projected onto
the y axis, each closing corresponds to the path crossing two corners
with opposite chiral charge, yielding no change in νL

y(Y , H).
There is no requirement that the axis that the system is pro-

jected onto for dimensional reduction is associated with one of the
original position operators. For example, the 2D breathing honey-
comb lattice shown in Fig. 8(a) could be projected onto an arbi-
trary choice of axis w = ax + by with associated position operator
W = aX + bY . For most such choices, the associated local marker
νL

w(W, H) would change six times, each by ±1.
Dimensional reduction plays an important role in the applica-

tion of the spectral localizer framework to realistic photonic systems,
as many technologically relevant photonic systems are 2.5D sys-
tems, such as photonic crystal slabs and metasurfaces. Rigorously,
such systems are 3D, but the desired topological boundary-localized
states in these systems reside in the same planar slab as the structure.
Thus, dimensional reduction enables the spectral localizer to rigor-
ously define local markers associated with 2D material topology for
such 3D planar systems. See Ref. 70 for an example where the spec-
tral localizer framework is used to identify a Chern photonic crystal
slab.

G. Behavior in the thermodynamic limit
The structure of the spectral localizer’s local markers pre-

sented in Sec. III C seems to suggest that these markers can only
be applied to systems described by finite, but arbitrarily large,
systems with bounded spectra where the signature, Pfaffian, and
determinant operations are well-defined because, in principle, the
entire spectrum of the spectral localizer can be found. (In prac-
tice, it is not recommended to ever compute the local markers this
way; instead see Sec. IV D.) Nevertheless, the definitions of the
spectral localizer framework are still well-defined for some infinite-
dimensional operators149 such as those describing physical systems
in the thermodynamic limit. The key is that formulas such as
Eq. (13) can be generalized to infinite-dimensional L(x,E) by consid-
ering its spectral flow as (x, E)moves along a path in position-energy
space.150

Consider a semi-infinite 2D system with a bounded spectrum.
For x chosen far outside of the system, one can prove that the
spectrum of its spectral localizer is balanced. Intuitively, this is
straightforward to see, as if x moves away from the edge of the half
lattice, κ(X − x1)⊗ σx + κ(Y − y1)⊗ σy has a growing spectral gap
that (H − E1)⊗ σz is of too-small a norm to close. Heuristically, we
want this to mean sig[L(2D)

(x,E)] = 0 as would be the case if the system
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FIG. 8. (a) Schematic of a 2D breathing
honeycomb lattice with C6v and chiral
symmetry. The intra-unit cell cou-
plings have strength tin = 0.2t, the
inter-unit cell couplings have strength
tout = t, and the lattice constant is a.
(b) Density of states for this system.
(c) LDOS at E = 0; each lattice site
is represented as a 2D Gaussian with
width r = 0.3a. [(d)–(g)] Application of
the spectral localizer framework to the
breathing honeycomb lattice dimension-
ally reduced to the x axis, showing a
schematic of the dimensional reduction
(d), the spectral flow of L̃(1D)

(x,0)(X , H)

(e), the local gap μC
(x,0)(X , H) (f), and

the local winding number νL
x(X , H) (g).

Panels [(h)–(k)] are similar, but consider
the same system dimensionally reduced
to the y axis and report quantities
based on L̃(1D)

(y,0)(Y , H). Simulations use

κ = 0.1(t/a).

were finite, but the signature is not defined for a semi-infinite sys-
tem. To be rigorous, we instead need to use spectral flow and the
so-called η-invariant.66,150 Then, as x is varied so that it crosses into
the bulk of the system, the spectral localizer’s spectrum near 0 can
be monitored for any crossings, i.e., one can track its spectral flow in
an analogous manner to the examples shown in Figs. 5–8. Crucially,
despite the fact that the spectral localizer is infinite-dimensional
(referring to the Hilbert space’s dimension, not the number of phys-
ical dimensions), in many cases, its spectral flow is well-defined
and yields a local topological marker. In other words, in these
cases spectral localizer has a “signature” that is twice the index of
a related Fredholm operator.65 The Z2 indices relate to the secondary
indices that can occur when the index of a Fredholm operator is
zero.143 Altogether, this means that the spectral localizer framework
can be rigorously generalized to the thermodynamic limit without
issue.

(At present, there is a technical restriction in defining the spec-
tral flow of an infinite-dimensional operator, as we need to know
that the spectral localizer has discrete spectrum, so now we cannot
work directly with a differential operator such as those needed for
photonic systems; see Sec. V. Open question: we conjecture that the
methods of spectral truncation151,152 in noncommutative geometry
are likely to provide a way around this limitation.)

IV. UNDERPINNINGS OF THE SPECTRAL
LOCALIZER FRAMEWORK

Having introduced the spectral localizer framework and pro-
vided a number of examples of its application to identifying material
topology across a variety of systems, this section discusses three top-
ics that underpin how the spectral localizer framework functions.
First, we provide a detailed discussion of the hyper-parameter κ and
provide some guidance for choosing κ. Then, we turn to introducing
multi-operator pseudospectral methods, which form the foundation
for proving bulk-boundary correspondence in the spectral local-
izer framework. Finally, we discuss how to efficiently implement the
spectral localizer’s local markers.

A. The role of the hyper-parameter κ
The hyper-parameter κ serves two critical roles in the spec-

tral localizer framework. First, κ adjusts the units of the position
operators in L(x,E) to have dimensions of energy so that they can
be combined with the Hamiltonian. Mathematically, this choice is
arbitrary, the spectral localizer could be defined in units of length
or made dimensionless through a second hyper-parameter and the
structure of the local markers would not change. Physically, this
choice is useful, as it enables direct comparison between the local
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gap μC
(x,E) and a system’s bulk bandgap or other spectral gap. Sec-

ond, κ balances the spectral weight of the Hamiltonian relative to the
position operators. In other words, κ is chosen so that the eigenval-
ues of L(x,E) are similarly sensitive to changes in H − E1 and changes
in X − x1, either because the choice of (x, E) is shifted or because
the system is perturbed H → H + δH. Intuitively, this second func-
tion of κ is playing a similar role as the choice of region areas in
the Kitaev marker, Eq. (4), or the choice of integration disk radius
in the Bianco-Resta marker, Eq. (8). For example, larger values of
κ are comparable with smaller integration disk radii in the Bianco-
Resta marker and generally enable greater specificity in changes of
x where the spectral localizer is evaluated, but potentially at the cost
of being too insensitive to spectral information and mis-classifying
the system’s topology. Similarly, smaller values of κ are comparable
with larger integration disk radii and generally yield correct material
classification in the bulk until the corresponding length scale∝ κ−1

is too large, similar to how the Bianco-Resta Chern marker is always
trivial if the integration disk contains the entire lattice, as shown in
Fig. 9.

Fundamentally, it is somewhat remarkable that the spectral
localizer can provide any useful information about a system at all. To
illustrate this point, briefly consider the dimensionless 2D spectral
localizer,

L(2D)
(x,E)(X, Y , H; κx, κE)

= [
κE(H − E1) κx(X − x1) − iκx(Y − y1)

κx(X − x1) + iκx(Y − y1) −κE(H − E1)
],

(30)

where κx has units of inverse length and κE has units of inverse
energy. In addition, we recall that none of the local topological mark-
ers can change their value without μC

(x,E) = 0; as such, it is useful to
understand the structure of the locations in (x, E)-space for which
the local gap closes μC

(x,E) → 0, as shown in Fig. 9. If κx = 0, the spec-

tral localizer is block diagonal, and thus sig[L(2D)
(x,E)(X, Y , H; 0, κE)]

= 0 for any choice of (x, E). In this case, the spectrum of the spectral
localizer will be determined entirely by the Hamiltonian’s spectrum
shifted by E, and those choices of (x, E) that result in μC

(x,E) = 0

will form flat planes in position-energy space for E ∈ spec[H]; see
Fig. 9(a). Conversely, if κE = 0, the spectral localizer is off-block diag-
onal, again resulting in a balanced spectrum regardless of (x, E),
with sig[L(2D)

(x,E)(X, Y , H; κx, 0)] = 0. In this second case, as X and
Y are diagonal, the locations in (x, E)-space where μC

(x,E) = 0 form
vertical lines intersecting the coordinates of each lattice site and
are independent of E, as shown in Fig. 9(e). Thus, in either limit,
the spectral localizer is always boring, simply returning informa-
tion about either the Hamiltonian or the position operators and
maintaining a balanced spectrum.

In between these two limits, it is reasonable to expect that
structures for which the local gap closes in position-energy space
interpolate between these two distributions. However, for a system
with non-trivial topology, a closed surface in (x, E)-space always
appears, for which μC

(x,E) = 0 as part of the interpolative process, as
shown in Figs. 9(b)–9(d). For locations outside of the system, or
choices of energy outside of the bounded spectrum, the local mark-
ers are provably trivial (see Ref. 64, Lemma 7.4). Therefore, if there
is a topologically non-trivial region in position and energy inside the
system, any path in position-energy space starting in the non-trivial
region and ending outside the system must possess at least one loca-
tion, where μC

(x,E) = 0 so the local markers can change their values,
yielding a closed surface.

For finite systems described by bounded Hamiltonians (i.e.,
the eigenvalues of finite-sized H are all finite) whose non-trivial
topology appears in a bulk spectral gap and stems from the Altland-
Zirnbauer classification, there is a proven range over which κ is
guaranteed to identify the system’s non-trivial topology,65

κ ≤
E3

gap

8 ⋅ 12∥Hbulk − E1∥(∑d
j=1 ∥[Xj , Hbulk]∥)

, (31)

κ ≥
Egap

l
. (32)

Here, Egap is the size of the bandgap of the system’s bulk Hamiltonian
Hbulk around the choice of E where the topology is being evaluated,
and l the length from the center of the sample to the boundary of
the finite system. [It should be noted that relative to the notation
used in Ref. 65 where these bounds are proven, Egap = 2g, where

FIG. 9. Evolution of the local gap closings as κ is varied using a Haldane lattice. For this figure, the chosen lattice is very small, 6 × 8, to ease the computational requirement
of finding these surfaces, so the corresponding range of κ that yields the correct system topology is narrow. The calculations are performed using the dimensionless 2D
spectral localizer in Eq. (30), and the surfaces correspond to μC

(x,E) = 0.05 (a)–(d) and μC
(x,E) = 0.15 (e). (a) κx = 0 and κE = t−1. (b) κx = 0.05a−1 and κE = t−1. (c)

κx = 0.5a−1 and κE = t−1. (d) κx = a−1 and κE = 0.4t−1. (e) κx = a−1 and κE = 0. It should be noted that the choice of axis limits shown here bisects the Haldane lattice
in y.
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FIG. 10. Local gap (a) and local marker (b) for a 2D Haldane model for different
κ with logarithmic spacing. The calculations use the dimension-full 2D spectral
localizer in Eq. (12) and are evaluated at the center of the lattice x = 0 and the
middle of the bulk bandgap E = 0. The different colors correspond to different
lattice sizes, 15 × 20 (magenta), 30 × 40 (purple), 60 × 80 (blue), and 120 × 160
(cyan).

g = ∥(Hbulk − E1)−1
∥
−1, with E chosen in the center of the bulk spec-

tral gap.] Generally, we find that these bounds are conservative, and
even for modestly sized systems, choices of κ spanning two or more
orders of magnitude will produce quantitatively similar results for
the spectral localizer’s local gap and local markers.68,69 An example
comparing the κ range correctly classifies a system’s topology as the
lattice size is increased as shown in Fig. 10. Moreover, we typically
find that the equality in Eq. (32) provides an excellent initial choice
for κ, even for systems with unbounded spectra; also see Sec. V E.

Finally, as μC
(x,E) can change for different choices of κ, the spec-

tral localizer framework’s best estimate for the topological protection
at (x, E) is the maximum local gap over all κ that yield the same local
markers. It should be noted that different choices of (x, E) might
achieve their largest local gap for different values of κ.

B. Overview of multi-operator
pseudospectral methods

In Sec. III B, we introduced the local gap μC
(x,E) and discussed

how this provided a measure of topological protection for a sys-
tem. Moreover, in Secs. III C and IV A, we argued that in systems
with non-trivial topology, the local gap must close everywhere on
a closed surface in position-energy space surrounding topological
regions in a system. Thus, given that the local gap in a bulk region is
quantitatively connected to the bulk spectral gap in that region, it is
reasonable to argue that the (x, E) surface over which μC

(x,E) = 0 must
be near the interface between the topological and trivial regions in a
system. Yet, looking at some of the examples considered in this tuto-
rial, such as Figs. 5(c) and 5(d), closings of the local gap appear to be
co-located with positions of the associated topological edge-localized
states in a spectral gap. In this section and the next, we make this
connection between a system’s LDOS and local gap rigorous and
ultimately show how bulk-boundary correspondence manifests in
the spectral localizer framework.

Another way to intuitively understand the mathematical form
of the spectral localizer is as the combination of eigenvalue equa-
tions, with the form (M − λ)∣ϕ⟩ = 0, of the system’s Hamiltonian
and position operators using a Clifford representation. However,
there is an important difference: in standard eigenvalue equations,
the eigenvalues are completely determined by the corresponding

matrix. Instead, in L(x,E), (x, E) can be chosen to be any real num-
bers and are not limited to those energies in the spectrum of H,
nor those positions corresponding to lattice vertices. Nevertheless,
the resemblance of L(x,E) to a composition of eigenvalue equations
highlights a key feature of the spectral localizer: it can be used
to identify approximate joint eigenvectors of the non-commuting
constituent matrices, i.e., it can determine if a system exhibits an
approximate state ∣ϕ⟩ for which H∣ϕ⟩ ≈ E∣ϕ⟩ and Xj∣ϕ⟩ ≈ xj∣ϕ⟩. Thus,
the spectral localizer is an example of a composite operator; it could
be called the Clifford composite operator; and it defines a multi-
operator ε-pseudospectrum, namely the Clifford ε-pseudospectrum.
In particular, a system’s Clifford ε-pseudospectrum is

ΛC
ε (X, H) = {(x, E)∣ μC

(x,E)(X, H) ≤ ε}, (33)

i.e., the set of points in position-energy space for which the local gap
is less than or equal to ε. It should be noted that Eq. (33) is the origin
of the superscript in μC

(x,E).
Relating a system’s Clifford ε-pseudospectrum to the appear-

ance of approximate joint eigenvectors is most easily done through
the introduction of a second composite operator, the quadratic
composite operator,153

Q(x,E)(X, H) =
d

∑
j=1

κ2
(Xj − xj1)2

+ (H − E1)2. (34)

Similar to the spectral localizer, the quadratic composite operator
defines a local gap,

μQ
(x,E)(X, H) = (min [spec(Q(x,E)(X, H))])1/2, (35)

and the quadratic ε-pseudospectrum,

ΛQ
ε (X, H) = {(x, E)∣ μQ

(x,E)(X, H) ≤ ε}. (36)

In comparison with the definition of μC
(x,E) in Eq. (14), the absolute

value operation can be dropped in Eq. (35) as Q(x,E) is semi-positive
definite, while the square root is needed to adjust μQ

(x,E) to have
units of energy. Finally, the key reason to introduce the quadratic
composite operator is that its local gap is related to the location
and localization of an approximate eigenstate across all of the con-
stituent matrices. In particular, it can be proven that (see Ref. 153,
Proposition II.1)

(μQ
(x,E)(X, H))

2
= min∣ϕ⟩∈ℋ

⎧⎪⎪
⎨
⎪⎪⎩

d

∑
j=1

κ2
[⟨ϕ∣X2

j ∣ϕ⟩ − ⟨ϕ∣Xj ∣ϕ⟩2

+ (⟨ϕ∣Xj ∣ϕ⟩ − xj)
2
] + ⟨ϕ∣H2

∣ϕ⟩ − ⟨ϕ∣H∣ϕ⟩2

+ (⟨ϕ∣H∣ϕ⟩ − E)2
⎫⎪⎪
⎬
⎪⎪⎭

, (37)

i.e., the quadratic local gap is equal to the minimum of the brack-
eted quantity as ∣ϕ⟩ ranges over all of the possible unit vectors
in the system’s Hilbert space ℋ. In other words, the quadratic
local gap is fundamentally related to whether the system exhibits
an approximate joint eigenvector localized near (x, E) in both its
center-of-mass and variances; if μQ

(x,E) is small relative to the system’s
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energy scale, such an approximate joint eigenvector exists. Here,
there is a critical difference between μQ

(x,E) and μC
(x,E): the former can

only become zero if the constituent matrices at least partially com-
mute and ∣ϕ⟩ is a true joint eigenvector; the latter can become zero
even when the constituent matrices do not partially commute.

More broadly, multi-operator pseudospectral methods are an
approach to understanding whether an arbitrary number of non-
commuting matrices nevertheless exhibit approximate joint eigen-
vectors, and a variety of other multi-operator pseudospectra have
been proposed.154,155 Moreover, the multi-operator pseudospectral
methods that we discuss here can be considered as a generalization of
“two-operator” pseudospectra156,157 that have previously been used
to study a variety of physical systems.158–163 It should be noted
although that both multi-operator pseudospectral methods and two-
operator pseudospectral methods are unrelated to “pseudospectral
methods” as an alternate name for discrete variable representation
methods used in the solution of partial differential equations.164

C. Bulk–boundary correspondence in position space
Having discussed how the quadratic local gap is connected

to the system’s ability to exhibit a localized state, we now turn to
the manifestation of bulk-boundary correspondence in the spectral
localizer. In particular, notice that the square of the spectral localizer
is almost equal to the quadratic composite operator tensored by the
identity,

(L(x,E)(X, H))2
= Q(x,E)(X, H)⊗ 1 +

d

∑
j=1

κ[Xj , H]⊗ ΓjΓd+1, (38)

where Γj is the Clifford representation used to define the spectral
localizer, and we are using the fact that position operators commute
[Xj, Xl] = 0. (Alternatively, the spectral localizer can be viewed as
almost the square root of the quadratic composite operator using
a Clifford representation, much in the same way as how the Dirac
equation is related to the Schrödinger equation.) As such, the differ-
ence between the (Clifford) local gap and the quadratic local gap is
bounded,

∣(μC
(x,E)(X, H))

2
− (μQ

(x,E)(X, H))
2
∣ ≤

d

∑
j=1

κ∥[Xj , H]∥; (39)

see Ref. 153, Proposition II.4 for a full proof.
Thus, bulk-boundary correspondence naturally appears as a

consequence of Eq. (39). As discussed in Sec. III C, changes in
any of the spectral localizer’s topological markers can only occur
at locations in the (x, E)-space where μC

(x,E) = 0. Moreover, material
systems are generally local, such that κ∥[Xj, H]∥ ∼ κa is small rel-
ative to the system’s energy scale, where a is the lattice constant.
Thus, at locations where a system’s local topology changes, Eq. (39)
guarantees that μQ

(x,E) is small, such that there must be a nearby state
of the system due to Eq. (37). In addition, it should be noted that
the need for the spectral localizer framework to be applied to finite
systems with OBC can be viewed as a consequence of Eq. (39); if
PBC were allowed, then κ∥[Xj, H]∥ ∼ κlj with lj being the length of
the system in the jth dimension, which is generally large, and thus a
bulk–boundary correspondence would not generally exist.

FIG. 11. Comparison of the LDOS (a), Clifford local gap (b), and quadratic local
gap (c) for a 1D SSH lattice in both topological (left panels) and trivial (right pan-
els) phases with 20 unit cells, coupling coefficients v = t and w = 0.4t, and lattice
constant a. The simulations use κ = 0.5t/a.

However, Eqs. (37) and (39) have broader utility beyond guar-
anteeing boundary-localized topological states; they can be used to
predict the properties of all of a system’s states. For example, the
LDOS, local gap, and quadratic local gap are compared for both triv-
ial and topological 1D SSH chains shown in Fig. 11. As can be seen,
both μC

(x,E) and μQ
(x,E) quantitatively resemble the system’s LDOS

at all positions and energies. Open question: however, it should
be noted that the (Clifford) local gap becomes smaller than the
quadratic local gap where the system exhibits states. Thus, it appears
that μC

(x,E) should provide a sharper estimate for position-energy
locations where a system exhibits an approximately localized state,
regardless of whether the state is of topological or trivial origin. Yet,
at present, the best known bounds on a state’s location and localiza-
tion are given in terms of μQ

(x,E) via Eq. (37). Further study is required
to understand whether better bounds can be derived in terms of the
Clifford local gap.

D. Efficient algorithms and numerical K -theory
It is tempting, but inadvisable, to calculate the spectral

localizer’s local markers with the forms given in Eq. (25) using a
naïve approach, e.g., first calculating the determinant or Pfaffian
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of L(x,E) and then taking its sign, or first calculating the spectral
localizer’s full spectrum and then calculating its signature. Unfortu-
nately, even for modestly sized systems, such a naïve approach will
yield, at best, a slow numerical implementation, and might, at worst,
mis-classify the system. Fundamentally, these kinds of approaches
fail to take advantage of two separate properties of the spectral local-
izer framework. First, such naïve approaches do not leverage the fact
that L(x,E) is guaranteed to be sparse, which is due to Xj being diag-
onal and H being reasonably local.73 Second, in viewing the local
marker formulas as specifying a sequential algorithm, e.g., find the
determinant then take its sign, they miss significant speed-ups avail-
able from using matrix factorizations that may not preserve L(x,E)’s
spectrum, but do preserve the local marker.

An example of the numerical efficiencies available to the spec-
tral localizer framework can be seen in the calculation of the sign of
a determinant. For the sake of specificity, in class D we can change
basis so that the particle–hole operator is just complex conjugation
𝒦. Thus, in 1D, we have two Hermitian matrices X and H that com-
mute or anti-commute with 𝒦. In matrix terms, we have X real (all
real matrix entries) and H purely imaginary. In most models, X will
be diagonal, so very sparse, and H will be sparse or approximable by
sparse. This means that if we use the reduced spectral localizer from
Eq. (28) with 𝒦 instead of Π, then L̃(x,0)(X, H) is real, symmetric,
and sparse. The local index in this case is

sign (det [(κ(X − x1) − iH)𝒦]). (40)

Given a real invertible matrix M, we need to take care of how
we compute sign(det[M]). Since det[M] is the product of all the
eigenvalues of M, the numerical calculation of this determinant will
frequently lead to underflow or overflow errors. Thus, we need to
directly compute the sign of the determinant. Computing all the
eigenvalues, taking sign of each one and taking the product of these
±1 will avoid the underflow and overflow issues. However, this will
be too slow for all but small models. A good algorithm can instead be
constructed using the LU decomposition of M. (It should be noted
that LU is not an acronym, it instead references the formula for this
decomposition.) Standard algorithms, applied to M, will return a
lower-triangular matrix L and an upper-triangular matrix U so that
M = LU. Since

sign (det [LU]) = sign (det [L]) sign (det [U]), (41)

we need only take the sign of all diagonal elements of both L and U
and form the product. If M is sparse, it is best to use a more sophis-
ticated form165 of LU factorization that factors into more matrices,
each matrix in some form that makes the sign of its determinant
quick to compute, where all the factors are about as sparse as M.
See the MATLAB code in a repository associated with Loring64,166 for
more details.

We can also compute signatures and signs of Pfaffians effi-
ciently, without total knowledge of the spectrum of L(x,E) by using
similar matrix factorizations. In the cases where the index is com-
puted via the signature, one can use the so-called LDLT matrix
factorization technique to calculate the signature. (Again, LDLT is

not an acronym.) If we have M = LDL† with L being the lower-
triangular and D being the diagonal, we can use Sylvester’s law of
inertia,167

sig[LDL†
] = sig[D] (42)

and then just count the positive entries on the diagonal of D.
In some software packages, the sparse LDLT decomposition is

not implemented in the case of complex matrices. A work-around
exists, which takes advantage of the embedding of the complex
numbers into the algebra of two-by-two real matrices,

a + ib↦ [
a −b
b a

]. (43)

Thus, the formula that can be utilized is

sig(M) =
1
2

sig

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
2
(M∗ +M) −

i
2
(M∗ −M)

i
2
(M∗ −M)

1
2
(M∗ +M)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (44)

(Lurking mathematicians are reminded that M∗ here denotes taking
complex conjugate only.)

For the sign of the Pfaffian of a real, skew-symmetric matrix M,
we need to employ a skew-LDLT factorization where software is not
readily available. The basic algorithm has been developed by Duff.168

For dense matrices, we can utilize the standard Hessenberg factor-
ization, M = UTU⊺ that has U being real orthogonal and T being
skew-symmetric and tri-diagonal due to being skew-symmetric and
in the Hessenberg form. The sign of the Pfaffian of T can be quickly
computed and we can utilize the formula,

sign (Pf[LTL†
]) = sign (det [L]) sign (Pf[T]). (45)

Finally, we note that the local gap can be efficiently computed
using sparse matrix methods, which can find the single eigenvalue
with the smallest magnitude without determining the full spectrum
of the spectral localizer.

Altogether, the local topological markers provided by the spec-
tral localizer framework are examples of numerical K-theory, which
can broadly be defined as the study and development of the formula
for K-theoretic invariants, such as invariants that classify material
topology, which are amenable to efficient numerical calculation.
Other examples of numerical K-theory outside of the spectral local-
izer framework have been developed by Prodan,169 Fulga,170 and
Quinn and Bal.171

V. APPLYING THE SPECTRAL LOCALIZER
TO PHOTONIC SYSTEMS

Having introduced the spectral localizer framework in general,
in this section, we now turn to its application to realistic photonic
systems. Overall, the process of adapting Maxwell’s equations for
use with the spectral localizer is relatively straightforward and can
be accomplished with standard discretization techniques, including
both finite-difference67,69 and finite-element70 methods. However, in
doing so, two issues arise that are not found in the kinds of simple
tight-binding models considered in Secs. III and IV. First, Maxwell’s
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equations are a set of differential equations with an unbounded spec-
trum, i.e., these equations exhibit an infinite number of eigenvalues
that become infinitely large. Thus, prior to discretization, quantities
such as ∥H∥ are undefined. While discretizing the system yields a
finite Hamiltonian matrix with a bounded spectrum, ∥H∥ is then
determined by the modes at the extremes of H’s spectrum that
are never in the frequency range of interest because they are not
well-described by the discretization (if these frequencies are of inter-
est, a finer discretization is needed). As such, the spectral localizer
framework’s predictions for topological protection (Sec. III B) and
bounds on κ (Sec. IV A) need to be adapted. Second, photonic sys-
tems commonly feature radiative boundary conditions,172 which are
non-Hermitian. Thus, the spectral localizer framework’s local mark-
ers need to be adapted for non-Hermitian systems featuring line
gaps.

In this section, we first remind a reader how Maxwell’s equa-
tions can be reformulated into an ordinary eigenvalue equation and
subsequently discretized to be used in the spectral localizer frame-
work. Then, in Sec. V C, we discuss how to use a generalized
eigenvalue problem in the spectral localizer, which is an approach
suited for use with finite-element methods. In Sec. V D, we show
how to generalize the spectral localizer and local Chern marker to
line-gapped non-Hermitian systems to allow for the inclusion of
radiative boundary conditions. In Sec. V E, we consider how the
spectral localizer framework’s local measure of protection needs to
be altered for systems with unbounded, or effectively unbounded,
spectra. Finally, in Sec. V F, we comment on using the spectral
localizer to address nonlinear systems.

A. Review of Maxwell’s equations
as an eigenvalue equation

In linear materials with local responses, the source-free
Maxwell’s equations for time-harmonic fields with a single fre-
quency component ω are

∇× E(x) = iωμ(x,ω)H(x), (46a)

∇×H(x) = −iωε(x,ω)E(x), (46b)

∇ ⋅ [ε(x,ω)E(x)] = 0, (46c)

∇ ⋅ [μ(x,ω)H(x)] = 0. (46d)

Here, E(x) and H(x) are the electric and magnetic fields,
respectively, and ε(x,ω) and μ(x,ω) are the electric permittivity
and magnetic permeability material responses, respectively, that are
typically spatially varying. Rigorously, for material responses to be
dispersive (i.e., frequency dependent), the Kramers–Kronig relations
require them to also be lossy (i.e., non-Hermitian).173 Thus, at a
given x, ε(x,ω) and μ(x,ω) are both generally 3 × 3 complex matri-
ces. Nevertheless, in many cases, it is possible to assume that the
absorption lines of a material’s response are sufficiently narrow and
far away from a frequency range of interest so that these tensors
can be approximated as Hermitian. Finally, for ω ≠ 0, Eqs. (46c)
and (46d) can be derived from Eqs. (46a) and (46b) due to the vec-
tor calculus identity∇ ⋅ ∇ × F(x) = 0 for any vector field F(x), and
thus Eqs. (46a) and (46b) provide a complete description of a pho-
tonic system’s behavior for non-zero frequencies. Altogether, under

these assumptions, Maxwell’s equations can be can be rewritten as a
generalized eigenvalue problem,

Wψ(x) = ωM(x,ω)ψ(x), (47)

in which

ψ(x) = [
H(x)
E(x)

], (48a)

W = [
0 −i∇×

i∇× 0
], (48b)

M(x,ω) = [
μ(x,ω) 0

0 ε(x,ω)
]. (48c)

As a differential operator, Eq. (47) is not yet in a form that
can be handled numerically in conjunction with the spectral local-
izer framework. Instead, the system must be discretized via some
algorithm to yield a set of vertices xl, where the fields are defined,
resulting in finite, bounded matrices Wdisc and Mdisc(ω). For exam-
ple, choosing a basis in which the fields at each coordinate are
clustered together,

ψdisc =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H(x1)

E(x1)

H(x2)

E(x2)

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(49)

will result in a block diagonal material response matrix,

Mdisc(ω) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ(x1,ω)
ε(x1,ω)

μ(x2,ω)
ε(x2,ω)

. . .

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (50)

while the form of the discretized derivative matrix Wdisc will depend
on the details of how the derivatives are treated. In addition, the
chosen boundary condition must be incorporated into Wdisc and/or
Mdisc(ω). For example, if the discretization is being performed
using a finite-difference approach on a Yee grid,174 perfect elec-
tric conductor (PEC, a photonic equivalent of OBC) boundaries
can be implemented in Wdisc as Dirichlet boundary conditions on
the relevant electric field components, resulting in Hermitian Wdisc.
Alternatively, to properly capture the capacity for radiation in some
photonic systems, stretched coordinate perfectly matched layers
(SC-PML) can be incorporated into Wdisc, making it non-Hermitian,
or impedance matched material absorption can be incorporated into
Mdisc(ω), similarly making it non-Hermitian. Overall, it is beyond
the scope of this tutorial to provide a full review of different dis-
cretization methods and associated boundary conditions; instead,
we assume that an interested reader will already be familiar with
such techniques. Altogether, through a chosen discretization and
boundary condition, Eq. (47) is transformed to

Wdiscψdisc = ωMdisc(ω)ψdisc, (51)
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which is almost in a form that can be used with the spectral localizer
framework.

Here, it should be noted that we have reviewed Maxwell’s
equations from the perspective of coupled first-order differential
equations. However, it is also possible to use the second-order differ-
ential equation form in the spectral localizer framework.68 Indeed,
the second-order form has some advantages for some forms of topol-
ogy as it does not require handling both ordinary vectors such as the
electric field E(x) and co-vectors (also called pseudovectors) such
as the magnetic field H(x) in the same eigenvalue equation as they
transform differently under some symmetries.

At this point, there are two different ways to proceed. One can
reformulate Eq. (51) as an ordinary eigenvalue equation, which pre-
servesω as the eigenvalue but places requirements on the constituent
materials. Alternatively, one can work with Eq. (51) directly, which
does not have any material constraints, but slightly alters how the
frequency eigenvalue is handled.

B. Ordinary eigenvalue problem approach
To incorporate Eq. (51) into the spectral localizer framework as

an ordinary eigenvalue equation, we assume that Mdisc(ω) is Her-
mitian and semi-positive definite, such that it exhibits a unique
Hermitian semi-positive definite square root M1/2

disc(ω). Physically,
this assumption means that all of the system’s constituent materials
are standard dielectrics, possibly with an anisotropic or gyro-optic
response. Numerically, it also forces any radiative boundary to be
incorporated in Wdisc. Moreover, one can prove that M1/2

disc(ω) obeys
all of the same unitary and anti-unitary symmetries as Mdisc(ω);
see Ref. 67, supplemental material. Thus, using the standard sub-
stitution ϕdisc =M1/2

disc(ω)ψdisc, Eq. (51) can be written as an ordinary
eigenvalue equation,

M−1/2
disc (ω)WdiscM−1/2

disc (ω)ϕdisc = ωϕdisc, (52)

which can be inserted directly into the spectral localizer frame-
work as L(x,ω)(X, M−1/2

disc (ω)WdiscM−1/2
disc (ω)). It should be noted

that in many cases, the frequency dependence of Mdisc(ω) can be
ignored, either because the materials are not dispersive as the rel-
evant topology is of geometric origin, or because the frequency
dependence is approximately constant over the relevant range where
the system exhibits non-trivial topology. In practice, we have found
the approach of this subsection to be useful in conjunction with
finite-difference discretization methods.67–69

Mathematically, there are other possibilities for the properties
of Mdisc(ω) that would allow for a unique square root to be defined,
such as if it is negative semi-definite. Physically, these cases are not
especially relevant, as they generally correspond to systems that are
completely formed of metals that are likely to be highly absorbing at
technologically relevant frequencies.

C. Generalized eigenvalue problem approach
Alternatively, Eq. (51) can be inserted directly into the spec-

tral localizer as a generalized eigenvalue equation. To do so, we first
rewrite Eq. (51) as

(Wdisc − ωMdisc(ω))ψdisc ≡ Heff(ω)ψdisc = αψdisc, (53)

where we have introduced α as an eigenvalue of the effective Hamil-
tonian Heff(ω). Then, the effective Hamiltonian can be inserted into
the spectral localizer, and we simply always choose to probe the
system at α = 0, i.e., using L(x,0)(X, Heff(ω)) with the system’s fre-
quency dependence always incorporated directly into the effective
Hamiltonian. In practice, we have found this generalized eigenvalue
problem approach to be useful in conjunction with finite-element
methods; see Ref. 70 for more details.

It should be noted that this approach has some subtleties
in directly comparing perturbations in the effective Hamiltonian
against the local gap that requires considering (Mdisc(ω))−1Wdisc.
Open question: it may be possible to instead define an alternative
local gap based on ∑j(Xj − xj1)M ⊗ Γj + (Wdisc − ωMdisc(ω))⊗
Γd+1, which is guaranteed to have the same signature as a spec-
tral localizer based on Eq. (52) and would not involve calculating
a matrix inverse.

D. Accounting for non-Hermitian phenomena
Even in the absence of material absorption, many photonic sys-

tems exhibit radiative losses resulting in a Hamiltonian that is non-
Hermitian. For example, a topological heterostructure constructed
in a photonic crystal slab will exhibit out-of-plane radiation for states
whose in-plane momenta k∥ are above the light line ω = c∣k∥∣.175

Mathematically, this creates some challenges for the spectral local-
izer framework because the kinds of homotopy arguments that the
framework relies on typically demand Hermiticity. To illustrate this
point, it should be recalled that Sec. III A and Fig. 4 discussed how
two invertible Hermitian matrices can only be connected by a path of
invertible Hermitian matrices if they have the same signature. How-
ever, just as Fig. 4(b) showed how invertible Hermitian matrices with
different signatures can be connected by a path in which some of the
Hermitian matrices were non-invertible, a similar connection can be
made through a path that contains invertible non-Hermitian matri-
ces. Thus, to handle non-Hermitian physical systems, the underlying
homotopy arguments must either be replaced or expanded for the
spectra localizer framework to remain applicable.

For the specific case of classifying Chern topology (2D Class
A) in non-Hermitian systems, the necessary extension of the spec-
tral localizer framework has been rigorously proven; see Ref. 176.
To consider such systems, a few minor alternations are made to the
framework. First, the form of the spectral localizer is slightly altered,

L(2D,NH)
(x,y,E) (X, Y , H)

= (
H − EI κ(X − xI) − iκ(Y − yI)

κ(X − xI) + iκ(Y − yI) −(H − EI)†
). (54)

Second, the matrix signature in the definition of the local Chern
marker is calculated using only the real parts of the eigenvalues of
L(2D, NH)
(x,y,E) , i.e., as the difference in the number of eigenvalues with

positive real parts and negative real parts,

CL
(x,y,E)(X, Y , H) =

1
2

sigR[L
(2D, NH)
(x,y,E) (X, Y , H)]. (55)

It should be noted that this altered index formula is not equivalent to
calculating Eq. (13) with the Hermitian portion of Eq. (54). Finally,
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the local gap is also only dependent on the real parts of eigenvalues
of the non-Hermitian spectral localizer,

μC
(x,y,E)(X, Y , H) = min (∣Re{spec[L(2D,NH)

(x,y,E) (X, Y , H)]}∣). (56)

As can be seen, all three of these formulas reduce to their stan-
dard forms from Sec. III as Hermiticity is restored. Intuitively, these
formula are taking advantage of the fact that the non-Hermitian sys-
tem, and its resulting non-Hermitian spectral localizer, remain line
gapped (as opposed to point gapped) for Chern topology62,63,177–179

and thus the associated local topological markers can leverage this
spectral gap.

Numerically, the switch to non-Hermitian systems also yields
problems, as sigR[M] for non-Hermitian M can no longer be calcu-
lated using the LDLT decomposition and Sylvester’s law of inertia
as detailed in Sec. IV D and Eq. (42). Instead, progress has been
made by starting with a Hermitian variant of the system and gradu-
ally turning on the absorbing boundary condition while monitoring
μC
(x,y,E), which is still efficient to calculate using sparse methods. In

the Hermitian variant, the topology can be quickly calculated using
techniques from Sec. IV D, and then, if the local gap remains open
as the absorbing boundary condition is turned on, the topology can-
not change. Indeed, this approach has proven sufficient in realistic
photonic systems using both finite-difference69 and finite-element70

discretizations.
Open questions: there remains a great deal of work to do in this

area. First, it is not known whether the local markers for any other
class of topology in the Altland-Zirnbauer symmetry classification
can be similarly generalized to non-Hermitian systems. Similarly,
the non-Hermitian generalization of crystalline topology is not
known. This problem is particularly acute for the odd-dimensional
classes of topology, where the local markers for Hermitian systems
are dependent on a symmetry reduced spectral localizer such as
Eq. (28) that only includes a single copy of the system’s Hamiltonian.
In addition, it is unknown whether there are efficient numerical
approaches for directly calculating Eq. (55).

The spectral localizer framework has also been extended to
consider other forms of non-Hermitian topology by Fulga and
colleagues.120–122

E. Local protection for unbounded operators
Using the spectral localizer framework on systems described

by differential equations with unbounded spectra, i.e., systems that
exhibit an infinite number of eigenenergies that become infinitely
large, presents a problem for the framework’s measure of topo-
logical protection. Regardless of which specific approach is taken
to insert the system’s Hamiltonian into the spectral localizer, the
norm of any perturbation diverges. Heuristically, this problem stems
from the fact that the differential operator W is unbounded, and
any perturbation to the material response matrix M(ω)→M(ω)
+ δM(ω) still ends up multiplying W for comparison with the
local gap, so the full Hamiltonian perturbation remains unbounded.
Thus, the criteria for the system to change its local topology ∥δH∥
> μC
(x,E)(X, H) is always trivially satisfied. Intuitively, the problem is

that μC
(x,E) is a provably local quantity in both x and E (see Ref. 180,

Sec. 7), reflecting whether the system exhibits a nearby state approx-
imately localized at those position-energy coordinates (as discussed

in Sec. IV C). In contrast, ∥δH∥ is a global quantity, and is controlled
by the system’s response at high energies.

One partial solution to this issue is to project the perturbation
into the subspace formed by the J eigenvectors whose corresponding
eigenenergies are closest to E where the local gap is calculated. Then,
for J chosen to include the states of the finite system that correspond
to the neighboring few bands both above and below E, the system
has an approximate bound

∥Ψ†ΔHΨ∥ ≳ μC
(x,E)(X, H) (57)

for the perturbation to change the system’s local topology.69 Here,
Ψ is the rectangular matrix formed of these J eigenvectors. This
approach is also similar to spectral truncation introduced for
systems described by differential operators in time.181

Open questions: however, there is a pressing need to develop
an exact bound for the topological protection of realistic systems,
possibly in terms of a resolvent, rather than such an approximate
bound. Indeed, one of the strengths of the spectral localizer frame-
work is its ability to be applied directly to experimentally realizable
systems, but those systems are described by wave equations where
the difficulty discussed in this section will arise. Ideally, this bound
would be formulated in terms of quantities that can be efficiently
computed for sparse matrices. Alternatively, the introduction of an
alternative local gap, as discussed in Sec. V C, may also solve the dif-
ficulty discussed in this section by separating out the perturbation
to the material response matrix yielding a bound on ∥δM∥, which is
generally finite.

F. Classifying local nonlinear topology
Nonlinear topological systems represent an exciting frontier in

photonics, providing a path to exploring phenomena beyond what
can be found in electronic topological materials,57 such as bulk182–189

and edge190–192 solitons with topological properties, nonlinearly
induced topological phase transitions,193–195 and topological multi-
wave mixing.196–200 Moreover, the spectral localizer framework and
its local picture of material topology appears to be extremely well
positioned to study these systems,71,201 as its local markers are able
to resolve a system’s local change in topology due to its occupation.

Nonlinear photonic systems are typically considered using a
Gross–Pitaevskii equation202,203 that describes the effects of parti-
cle interactions mediated by an ambient material response in the
mean-field limit. In steady-state, such systems are characterized by a
nonlinear eigenvalue equation,

H(ψ)ψ = ENLψ. (58)

As such, no alterations are needed to the spectral localizer frame-
work to handle such mean-field nonlinearities and identify non-
linear topological phenomena; for any specified occupation ψ, the
system’s local topology and associated protection can be found using
L(x,E)(X, H(ψ)); see Ref. 71. Moreover, the spectral localizer frame-
work enables a rigorous definition of topological dynamics, as it can
classify changes in a system’s local topology as a system’s occupation
ψ(t) changes in time t.

While the definition of local topological protection provided
by μC

(x,E) remains unchanged for nonlinear systems, it acquires new
physical meaning for such systems.71 As discussed in Sec. III B,
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for any perturbation to a linear system described by a bounded
Hamiltonian H → H + δH to change the local topology at (x, E), the
perturbation must be at least strong enough to close the local gap
∥δH∥ > μC

(x,E)(X, H). However, in nonlinear systems, a small per-
turbation to the Hamiltonian can change whether a given solution to
the nonlinear eigenvalue equation exists. In other words, given a self-
consistent solution to Eq. (58), one can try to follow this solution as
the strength of a perturbation is increased, but it is possible that for
a sufficiently strong perturbation that the solution curve may simply
terminate. Nevertheless, if this self-consistent solution is topologi-
cal, i.e., it induces a local change in the system’s topology at some
(x, E), then μC

(x,E) guarantees that the solution curve cannot disap-
pear until the perturbation is strong enough to close the local gap,
as the self-consistent solution disappearing causes a change in the
system’s local topology.

VI. C ∗-ALGEBRAIC BACKGROUND
TO THE SPECTRAL LOCALIZER

Overall, this tutorial has focused on providing an understand-
ing of how the spectral localizer framework is used to classify
material topology and its associated robustness in physical systems,
with the goal of providing a reader with the necessary equations and
sufficient intuition to analyze their system of interest. Nevertheless,
in this penultimate section of the tutorial, we now turn to providing
some explanation of the mathematical underpinnings of the spectral
localizer framework. This section is primarily intended for a reader
with a mathematics background, with the goal of providing some
guidance on the relevant concepts needed to advance the mathemat-
ics of the spectral localizer. A reader uninterested in this topic may
safely skip this section.

A. C ∗-algebras
Those familiar with band theory might not realize that the

momentum-space picture Ĥ(eik
) = H(k), of a tight-binding Hamil-

tonian H, is an element of a C∗-algebra. In particular, Ĥ is an
element of C(Td, MN(C)), which is the set of continuous functions
from the d-torus to the N-by-N complex matrices. The elements
of C(Td, MN(C)) naturally act on the momentum Hilbert space
ℋm = L2

(Td
)⊗CN , so we could consider C(Td, MN(C)) as a sub-

algebra of ℬ(ℋm). In general, ℬ(ℋ) denotes the algebra of all
bounded linear operators on ℋ. However, if one wants to know the
spectrum of the original Hamiltonian H, acting on position space
ℋr = ℓ

2
(Zd
)⊗CN , for example, one can instead compute the spec-

trum of Ĥ, not as an operator on ℋm, but as an element of the
C∗-algebra C(Td, MN(C)). The spectrum is then simply the union
of the spectra of all the matrices H(k). In band theory, this relation
of band structure to the spectrum is explained by explicit calcu-
lations, essentially using the Plancherel (Fourier) transformation.
However, this can also be explained in C∗-algebra language, as an
application of spectral permanence; see, for example, Murphy,204

Theorem 2.1.11.
More broadly, the most basic C∗-algebra encountered in

physics, and the one most central to numerical studies, is simply
the n-by-n matrices Mn(C). This is essentially the same as (iso-
morphic to) ℬ(ℋ) with ℋ = Cn. In finite dimensions (as in, n is
finite), boundedness is automatic. Thus, the model used to arrive at

a definition of a C∗-algebra is just ℬ(ℋ) equipped with the linear
structure, operator composition (essentially matrix-matrix multipli-
cation), the spectral norm, and the adjoint. The spectral norm ∥M∥
of a finite matrix can be described as either the largest singular value
of M, or the maximum of ∥Mv∥ subject to the constraint ∥v∥ = 1.

The “ ∗ ” in C∗-algebra refers to taking an adjoint. The use of
T† by physicists and T∗ by mathematicians for the adjoint operation
is a situation that requires linguistic diplomacy in mixed company.
The other needed operations are the operations of addition, scalar
multiplication and multiplication of two elements in the C∗-algebra.
If F, G : Td

→MN(C) are two elements in C(Td, MN(C)) then all
operations are defined pointwise in momentum, so

(F +G)(eik
) = F(eik

) +G(eik
), (59a)

∥F∥ = maxk∥F(e
ik
)∥, (59b)

F†
(eik
) = (F(eik

))
†, (59c)

for example. There are axioms, more than a dozen, which ensure
that calculations in a C∗-algebra are very similar to calculations on
bounded operators that does not involve vectors.

Another instance where a physicist will have implicitly per-
formed calculations within a C∗-algebra is when functions are
applied to an operator. If H is Hermitian with spectrum Ω, then the
C∗-algebra C∗(H, 1), formed by taking limits of expressions such as
2H + iH3, will be isomorphic to C(Ω), the algebra of all complex-
valued continuous functions on Ω. The isomorphism sets up an
intuitive correspondence, sending H to the function h(λ) = λ, and
the unitary propagator eitH to the function u(λ) = eitλ.

An example that was the inspiration behind defining the spec-
tral localizer is C(Sd

), the C∗-algebra of all complex-valued contin-
uous functions on the d-sphere. If we regard Sd as the unit sphere in
Rd, we get d + 1 coordinate functions x̂ j : Sd

→ C, defined simply by

x̂j(x1, . . . , xd+1) = xj. (60)

One then finds that L0(x̂1, . . . , x̂d+1) is the matrix that determines a
generator of K j(C(Sd

)), the jth K-theory group of the commutative
C∗-algebra C(X). [One might need to apply a shift and scaling to this
if using (generic) projectors p2

= p†
= p to build K0 groups, as one

does classically.] This is not so obvious for d ≥ 4, but Schulz-Baldes
has proven all the needed details.205

The most common mapping from one C∗-algebra to another,
say φ : 𝒜→ℬ, is a ∗ -homomorphism. The required conditions on
φ, so it can call itself a ∗ -homomorphism, are those that make it
linear, along with φ(AB) = φ(A)φ(B), and φ(A†

) = φ(A)†. A sim-
ple calculation shows that the ∗ -homomorphisms C(S2

)→Mn(C)
can be easily classified. Indeed, if we let X = φ(x̂), Y = φ(ŷ), and
Z = φ(ẑ), then we have the relations,

X†
= X, Y†

= Y , Z†
= Z,

[X, Y] = 0, [X, Z] = 0, [Y , Z] = 0,

X2
+ Y2

+ Z2
= 1.

(61)
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Any two such triples of matrices can be connected by a path of
such triples, and so we are not surprised to find that L0(X, Y , Z) has
always signature equal to zero here.

Different sorts of mappings φ : 𝒜→ℬ started generating
interest in the late 1980s,206,207 where one loosens the strict algebraic
requirements to allow something like

∥φ(A)φ(B) − φ(AB)∥ ≤ ε. (62)

Then, one can look at generators of a “fuzzy sphere,”208 where we
keep the Hermiticity conditions in Eq. (61), but relax the others
to ∥X2

+ Y2
+ Z2

− 1∥ ≤ ε and ∥[X, Y]∥ ≤ ε; this relaxation leads to
situations where L0(X, Y , Z) can have non-zero signature. More-
over, the relaxation of some of the conditions in Eq. (61) estab-
lished the connection between almost commuting matrices and
K-theory.134,209 Some abstract, but simple, mathematics can be used
to extend the mapping on x̂, ŷ, and ẑ to get a function

φ : C(S2
)→Mn(C) (63)

that is “almost multiplicative” and so forth.
Now, consider a 2D system, with matrix observables X,

Y , and H. If we let Cmin = min [∣spec(L0(X, Y , H))∣] and Cmax
= ∥L0(X, Y , H)∥, we can define a function,

φ : C(Ω)→Mn(C) (64)

that is “almost a ∗ -homomorphism,” where Ω is the subset of R3

of all points p with Cmin ≤ ∥p∥ ≤ Cmax. Thus, the two C∗-algebras
involved in this theory are extremely simple, while the map φ
between them is complicated and unfamiliar. However, this map φ is
really only needed to develop the pseudospectral theory; the spectral
localizer and associated index formulas can be understood without
knowing about φ.

B. C ∗-algebras with extra symmetries
Time-reversal in physics is generally described in terms of a

Hilbert space, as it is implemented by an anti-unitary operator 𝒯 :
ℋ →ℋ. We consider H to have time-reversal symmetry if H ○𝒯 =
𝒯 ○H. To make this concept compatible with the C∗-algebra pic-
ture, where the Hilbert space gets shoved to the background, we
simply define a new operation on ℬ(ℋ),

Aτ
= 𝒯−1

○ A†
○𝒯. (65)

The τ operation has algebraic properties similar to the trans-
pose operation on matrices. More broadly, the definition of such
symmetry-based operations on a C∗-algebra can be abstracted,
resulting in what is called a real C∗-algebra, where we have an opera-
tion similar to A↦ Aτ. In momentum space, this operation can look
like

Fτ(eik
) = F(e−ik

)
T, (66)

where T indicates the matrix transpose. There can also be an N-by-N
unitary U in the definition, specifically

Fτ(eik
) = UF(e−ik

)
TU†. (67)

This extra operation, and perhaps a second similar operation based
on particle–hole conjugation, changes many of the details with
defining K-theory via vector bundles. Once again, these challenges
are a problem for those developing this theory, but the end result
yields explicit formulas that can be understood on their own terms,
independent of the theory of real C∗-algebras.

We consider the system shown in Fig. 7, where only position
space is available. In addition to the Hamiltonian H, we have X
defined by X∣xk⟩ = xk∣xk⟩. Both these are elements of the C∗-algebra
Mn(C), where n is odd number of sites. Here, let us denote the inver-
sion operator by S, defined by S∣xk⟩ = ∣x−k⟩, as discussed in Sec. III E.
We will see that calling inversion S will mathematically conform
with the notational conventions of the tenfold Altland-Zirnbauer
classification. We can define a new operation on Mn(C) by

Aσ
= SAS (68)

and adding this structure turns Mn(C) into a graded C∗-algebra.
We call A even if Aσ

= A and odd if Aσ
= −A. We find that X is odd

since XS = −SX and H is even since HS = SH. We are in class AIII,
but with H in the role usually taken by X and vice versa compared
to the standard case where S denotes chiral symmetry. It should be
noticed that in most descriptions of the tenfold way, the position
operators go unmentioned, but it is physically reasonable to assume
that these commute with any of the local symmetries that are present
(i.e., those symmetries used in the Altland-Zirnbauer classification).

There is more structure here. Let 𝒯 denote complex conjuga-
tion, so bosonic time-reversal 𝒯 2

= 1. Let 𝒞 denote 𝒯 ○ S (where S
is still inversion). Physically, 𝒞 is definitely not charge conjugation,
but mathematically, we will see that (H, X) can be seen as a pair of
Hermitian matrices that are in class BDI, again with roles reversed.
We have X commuting with 𝒯 and anticommuting with 𝒞 (and so
anticommuting with S = 𝒞 ○𝒯 = 𝒯 ○𝒞). We can use the 1D class
BDI index formula,64 with the roles of H and X swapped

1
2

sig[(H − E1)S + κX] (69)

that leads to the same index as the class AIII formula, with the advan-
tage that (H − E1)S + κX is a real matrix; see Ref. 138. In C∗-algebra
terms, we would tend to keep the A↦ Aσ operation and add the
operation A↦ Aτ, where Aτ

= 𝒯 ○ A†
○𝒯 . With the addition of both

operations, we have made Mn(C) into a graded real C∗-algebra.
Theoretical work in the K-theory of C∗-algebras almost always

works with homotopy classes of elements that have been spectrally
flattened. That is, one looks at homotopy properties of Hermitian
elements with spectrum in {−1, 1} or unitary matrices, whose spec-
trum must lie in the unit circle. However, numerically, spectral
flattening is slow and typically results in a dense matrix. One gen-
erally cannot apply formulas from pure math papers on K-theory,
unmodified, and expect fast algorithms.

C. Clifford algebras
Clifford algebras operate behind these scenes to help categorize

all the possible irreducible Clifford representations.140 Moreover, it
can be useful to consider multiple Clifford representations in the
same calculation. For example, two very different Clifford repre-
sentations can be used to prove that various symmetries in (x, E)
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lead to a corresponding symmetry in the Clifford pseudospectrum
of (x, E).140

Let d denote one less than the number of Clifford matrices
needed, since we usually use d + 1 Clifford matrices when there are
d physical dimensions. The key thing to know when d is odd is that
any two Clifford representations of minimal size will be related via
conjugation by a single unitary. When d is even, this is false, as the
Clifford representations come in two flavors. For d = 2, the two fla-
vors can be distinguished by checking which of Γ1Γ2 = ±iΓ3 holds.
Within one of the flavors, all irreducible representations are related
via conjugation by a single unitary.

The full Clifford C∗-algebra can be described as the minimal
C∗-algebra containing the universal Clifford representation. When
d = 2, the relevant Clifford algebra, denoted in math as Cl3(C), is a
Cartesian product of matrix algebras,

Cl3(C) =M2(C)⊕M2(C), (70)

and the universal Clifford representation is

Γ̂1 = (σx,−σx), (71a)

Γ̂2 = (σy,−σy), (71b)

Γ̂3 = (σz ,−σz). (71c)

It should be noted that these are tuples of matrices, not matri-
ces. The representation theory of Cl3(C) is simple to work out.
Every irreducible Clifford representation is found by selecting a ∗ -
homomorphism π : Cl3(C)→M2(C) and then setting Γ j = π(Γ̂ j).
In principle, all our calculations can be performed in

Mn(C)⊗ Cld+1(C) (72)

using the universal Clifford representation, but if we want numerical
algorithms, we will want to use an irreducible Clifford representa-
tion to minimize the computer memory needed.

VII. SUMMARY AND OUTLOOK
In this tutorial, we have endeavored to provide a physically

motivated introduction to the spectral localizer framework to facil-
itate its use across the community to address challenges at the
frontiers of topological photonics. As this framework provides local
markers of material topology and comes equipped with a local
measure of protection, it is able to analyze systems that are either dif-
ficult or impossible to consider using traditional approaches, such as
topological phase transitions induced via local nonlinearities, effects
dependent on finite system sizes, and the appearance of topolog-
ical phenomena despite the absence of a spectral gap. Moreover,
due to the mathematical formulation of the framework’s invariants
and local gap, these quantities can be computed efficiently even
for realistic systems governed by differential operators and numer-
ically described using finite-difference or finite-element methods.
In addition, the framework’s generality has also enabled its appli-
cation in plenty of condensed matter settings.181,210,211 As part of
this introduction, we have outlined the mathematical concepts of
multi-operator pseudospectral methods, which allow for the predic-
tion of approximate joint eigenvectors of non-commuting matrices
and form the basis of bulk-boundary correspondence in the spectral

localizer framework, as well as numerical K-theory, the concept that
underpins the framework’s numerical efficiency. Finally, we have
provided some guidance to any interested mathematically oriented
reader for how to continue to develop the associated possibly real,
possibly graded C∗-algebras.

Looking forward, substantial opportunities remain in both the
development of the spectral localizer framework and its application
to novel physical systems to predict new phenomena. Throughout
this tutorial, we have marked open questions where the framework
would benefit from additional results proving a generalization to
better address significant classes of physical systems. Moreover, the
ability to use the spectral localizer framework in conjunction with
models of realistic systems beyond photonics, while including the
possibility of aperiodicity or disorder, may yield fruitful results
across a range of fields of study. In addition, as the field of topolog-
ical photonics turns to designing novel device architectures, where
miniaturization is at a premium, the framework may also find utility
in providing a better understanding of topological protection in the
presence of finite system size effects. However, more broadly, we are
hopeful that given a physically motivated introduction to the sub-
ject, the community will find even more applications of the spectral
localizer framework.
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APPENDIX: HOMOTOPY RESULTS

Here, we discuss the essential results on the homotopy classi-
fication of specific classes of matrices of a fixed size. We start with
proving the theorem in Sec. III A.

Proof of Theorem A. The argument to show that invertible
Hermitian, n-by-n matrices with different signatures cannot be con-
nected by a Hermitian path that remains invertible is essentially the
argument in the caption to Fig. 4. It is possible to find a continuous
path, perhaps by interpolation, of Hermitian matrices between the
two, but at some point along the path, an eigenvalue must cross zero
and that leads to non-invertibility.

Let us show that if H is an invertible, Hermitian, n-by-n with p
positive eigenvalues then there is a continuous path from H to

Kp = [
Ip 0
0 −In−p

]. (A1)

Any two such matrices can be connected to this one matrix, so we
can just travel along one path and then the other in reverse, show-
ing the claimed connectivity. The spectral theorem for Hermitian
matrices applies to H. This means there is are orthonormal vectors
∣ψ1⟩ through ∣ψn⟩, such that

H∣ψj⟩ = αj ∣ψj⟩. (A2)

By reindexing, we can assume 0 < αj for j ≤ p and αj < 0 for j > p.
We can find a path of these scalars over to 1 for j ≤ p and over to
−1 for j > p, without crossing zero, and so define a path of invertible
Hermitian matrices from H to H1, where

H1∣ψj⟩ = ±∣ψj⟩, (A3)

with the signs starting as + and then being all minus. We can next
find a path of orthonormal bases, from ∣ψj⟩ over to the canonical
basis, and so connect H1 to Kp. The connectedness of all orthonor-
mal bases is equivalent to the classical fact that U(N) is a connected
group.

Now, we get a subtle situation, that of fermionic parity. Kitaev73

discusses how this applies to 0D systems in Class D. In addition,
see Ref. 212 for a more detailed discussion of fermionic parity for
a coupled pair of quantum dots in a superconducting setting.

Theorem D0. Suppose n is even. Two n-by-n invertible Her-
mitian skew-symmetric matrices H and H′ can be connected by a
path of invertible Hermitian skew-symmetric matrices if and only if
sign (Pf[iH]) = sign (Pf[iH′]).

Proof. Suppose H⊺ = −H and H is Hermitian and invertible.
It should be noted that this also means H∗ = −H. We consider any
positive eigenvalue α of H. Given H∣ϕ⟩ = α∣ϕ⟩, we find

H∣ϕ⟩∗ = −H∗∣ϕ⟩∗ = −α∣ϕ⟩∗, (A4)

which demonstrates that the spectrum of H is symmetric across zero.
This means that det[H] is positive when n is a power of four, and
negative when n = 2, 6, . . .. However, det(iH) will always be posi-
tive. Therefore, the Pfaffian of H, being one of the square roots of
det(H), will be real and non-zero so the sign of the Pfaffian makes
sense. Since the Pfaffian varies continuously as H varies, the sign of
the Pfaffian cannot change along a path of such matrices. Thus, if
Pf(iH) and Pf(iH′) have opposite signs, then H and H′ cannot be
connected in this space of matrices.

From any positive eigenvalue αj, we obtain a pair of vectors with

H∣ϕj⟩ = α∣ϕj⟩ and H∣ϕj⟩
∗
= −α∣ϕj⟩

∗ (A5)

that must be orthogonal as they live is distinct eigenspaces of H. We
define real vectors ∣ψj⟩ and ∣ψ̃ j⟩ as

∣ψj⟩ =
i
√

2
∣ϕj⟩

∗
+
−i
√

2
∣ϕj⟩, (A6)

∣ψ̃j⟩ =
1
√

2
∣ϕj⟩

∗
+

1
√

2
∣ϕj⟩, (A7)

and so get a real orthonormal basis ∣ψ1⟩, ∣ψ̃1⟩ . . . , ∣ψm⟩, ∣ψ̃m⟩, where
n = 2m. One calculates

H∣ψj⟩ = −αj
i
√

2
∣ϕj⟩

∗
− αj

i
√

2
∣ϕj⟩ = −iαj ∣ψ̃j⟩, (A8)

H∣ψ̃j⟩ = −αj
1
√

2
∣ϕj⟩

∗
+ αj

1
√

2
∣ϕj⟩ = iαj ∣ψj⟩, (A9)

and so in this new basis, iH has matrix representation,

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 α1

−α1 0
0 α2

−α2 0
. . .

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A10)

and that matrix always has positive Pfaffian. However, the basis
change can alter the sign of the Pfaffian. If we assemble the ∣ψ j⟩, ∣ψ̃ j⟩

basis into a real orthogonal matrix O, then we have iH = OTO⊺ and

sign (Pf[iH]) = sign (det [O]). (A11)

We can gradually flatten the spectrum of H and so can assume αj = 1
for all j. Any two real orthogonal matrices of the same determinant
(either plus one or minus one) can be connected in the group O(N),
completing the proof.

Theorem D1. Two n-by-n invertible real matrices A and A′

can be connected by a path of invertible real matrices if and only if
sign (det [A]) = sign (det [A′]).
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Proof. Suppose H is real and invertible. The determinant of
a real matrix is always real and cannot be zero when H is invert-
ible. Since the determinant is continuous as a function of H, we see
that two such matrices with determinants of opposite sign cannot be
connected in this space of matrices.

To prove that all such matrices of a given sign of determinant
are homotopic, we first need to reduce to the case where A is real
orthogonal. We do this by utilizing the path Aτ = A(A†A)

−τ/2
. We

see that A0 = A and that A1 is real orthogonal. This construction is
continuous in A, a fact that can be used to show that two real orthog-
onal matrices that are homotopic in the larger space of invertible real
matrices must be homotopic in the smaller space. Real orthogonal
matrices form a group O(n) that has two connected components,
SU(n) and the space of real orthogonal matrices of determinant
minus one. One can understand this intuitively due to the nature
of the eigenvalues of A when A is real orthogonal. The spectrum of
A has three parts. There are eigenvalues at 1 that do not matter in
the sign of the determinant. There are conjugate pairs on the unit
circle that also do not matter since their product is positive. It is the
eigenvalues at −1 that can lead to det(A) = −1. Any two of these can
be deformed as a conjugate pair that ends up with both as +1. It is
the solo eigenvalue at −1 that cannot be moved.
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