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Abstract: We introduce a simplified version of the steady-state ab initio laser theory for
calculating the effects of mode competition in continuous wave lasers using the passive cavity
resonances. This new theory harnesses widely available numerical methods that can efficiently
calculate the passive cavity resonances, with negligible additional computational overhead.
Using this theory, we demonstrate that the pump profile of the laser cavity can be optimized
both for highly multi-mode and single-mode emission. An open source implementation of this
method has been made available.
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1. Introduction

There has been great recent interest in using spatially nonuniform pumping of a laser to control
the number and choice of lasing mode(s) [1–7]. While previous works have involved both
empirical approaches and those guided by theory and simulations, the latter currently have
drawbacks which limit their convenience and applicability to detailed optimization studies.
Historically, the design and optimization of a laser begins and ends with design of the laser
cavity. This approach has been used out of both convenience and necessity; many simulation
tools can easily calculate the eigenmodes of a passive cavity, but it is difficult to generalize these
tools to include the effects of the gain medium, such as mode competition, gain saturation and
spatial hole-burning. For example, auxiliary equations can be added to the finite difference time
domain (FDTD) method to account for these effects, but these add significant computational
overhead [8–12]. Frequency domain techniques, such as the steady-state ab initio laser theory
(SALT), can provide an exact treatment of both the cavity geometry and gain medium, but no
public implementation is available [13–15]. In lieu of a full treatment of the gain medium, the
highest Q eigenmodes of the passive cavity are assumed to be the lasing modes, and in practice
this ansatz works reasonably well provided that the cavity is uniformly pumped. However, lasing
modes are a function of both the cavity geometry and the spatial gain distribution within the
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cavity, and the laser properties can be significantly altered in the presence of non-uniform
pumping. Recent experimental and theoretical results have shown that optimizing the spatial
pump profile can provide additional degrees of freedom, enabling the selection of individual
lasing modes [1, 3, 4, 6], increasing the slope efficiency [5], adding functionality by enabling
tunable behavior [2], or increasing significantly the number of lasing modes at a given pump
value [7]. While these works illustrate the potential impact of using non-uniform pumping to
optimize the laser behavior, optimizing the spatial pump distribution experimentally is time
consuming and the performance gain can be difficult to predict beforehand.

In this work, we present an analytic method and associated simulation tool which enables 
non-uniform pumping to be incorporated into laser design from the outset. Specifically, we 
adapt an analytic approximation to SALT (SPA-SALT, the single pole approximation) [14] so 
that it can use the passive cavity resonances as an input. The passive cavity resonances can then 
be calculated using existing electromagnetic field simulation tools (e.g. FDTD, FEM), after 
which SPA-SALT solves for the lasing thresholds and modal intensities as a function of the 
spatial pump distribution while accurately accounting for the effects of mode competition, gain 
saturation and spatial hole-burning. This approach is valid when line pulling effects (including 
frequency locking [16]) are negligible, such as for most semiconductor microcavity lasers, as 
well as other laser systems with relatively high-Q passive cavities. It provides a computationally 
efficient method for including the effects of non-uniform pump distributions in laser design. 
To illustrate breadth of this technique, we use this algorithm to optimize the spatial pump 
profile in a multi-mode chaotic cavity laser to achieve either highly multi-mode lasing, or single 
mode lasing in the same cavity. Furthermore, we confirm the validity of this approximation 
through comparison with full SALT simulations. Finally, an open source implementation of this 
resonance SPA-SALT technique based on COMSOL is available in Code 1 (Ref. [17]).

The remainder of this paper is organized as follows, in Sec. 2 we provide the derivation of
the resonance SPA-SALT equations. Section 3.1 shows semi-quantitative agreement between
resonance SPA-SALT and exact simulations of the above threshold lasing behavior calculated
using SALT, demonstrating that the passive cavity formulation of SPA-SALT is sufficient for
guiding device design. Section 3.2 reports on enhancing the multi-mode behavior of cavities
through numerical non-linear optimization of the non-uniform pump profile. In Sec. 3.3, we
then show how changing the pump profile can be used to suppress multi-mode behavior, again
finding semi-quantitative agreement between SPA-SALT and SALT, and demonstrating that
single-mode behavior can be promoted through optimization of the pump profile. Finally, Sec. 4
will offer some concluding remarks.

2. Passive single pole approximation

As the SPA-SALT equations are based on SALT, which provides a quite general and accurate
theory of multimode steady state lasing, it is useful to provide a brief overview of that theory.
SALT was first derived nearly a decade ago as a frequency-domain formulation of the semi-
classical Maxwell-Bloch equations in steady-state, which can be solved efficiently to provide
a nearly exact description of the spatial degrees of freedom of the laser system [13–15]. SALT
has two features that distinguish it from previous approaches to solving the Maxwell-Bloch
equations, the ability to treat cavities with an arbitrary geometry, such as chaotic or random
lasers [18–21], and the capability to describe essentially exactly the space-dependent saturation
of the gain medium (spatial hole-burning). The fundamental SALT equations are coupled non-

Vol. 24, No. 23 | 14 Nov 2016 | OPTICS EXPRESS 26008 

https://github.com/acerjan/comsol_spasalt


linear wave equations for each active lasing mode, which take the form:

⎡
⎢⎢⎢⎢⎣(∇ × ∇× ) −

(
εc (x) + χg (x, ωμ , D0)

) ω2
μ

c2

⎤
⎥⎥⎥⎥⎦ Ψμ (x) = 0, x ∈ C,

⎡
⎢⎢⎢⎢⎣(∇ × ∇× ) − n2

0

ω2
μ

c2

⎤
⎥⎥⎥⎥⎦ Ψμ (x) = 0. x � C, (1)

The NL lasing modes interact through the non-linear space-dependent saturation of the gain
medium, which for a two-level Bloch atomic system is written as

χg (x, ω, D0) =
γ⊥D0(x)
ω − ωa + iγ⊥

(
1

1 +
∑NL

ν Γν |Ψν (x) |2
)

. (2)

In these equations, Ψμ (x) and ωμ ∈ R are the spatial profile and frequency of the lasing
modes, c is the speed of light in vacuum, εc is the dielectric function of the passive cavity,
which is contained in a spatial domain denoted by C, n0 is the index of refraction outside the
cavity, D0(x) is the pump strength, ωa is the atomic transition frequency, γ⊥ is the gain width
(polarization dephasing rate), Γν is the Lorentzian gain factor Γν = γ2⊥/((ων − ωa )2 + γ2⊥), and
the pump strength and fields have been written in normalized units [13, 14]. As lasing modes
are self-generated within the cavity, they must satisfy a purely radiating (Sommerfeld) boundary
condition,

lim
r→∞ r

d−1
2

(
c∂r − iωμ

)
Ψμ (x) = 0, (3)

in which r ≡ |x|, and d is the dimensionality of the system [22]. Enforcing this purely outgoing
boundary condition upon Eq. (1) results in a quantization condition on the allowed frequencies
of the lasing modes. Taken together, Eqs. (1)-(3), comprise the SALT equations, NL coupled
differential equations, one for each active lasing mode, where NL is determined self-consistently
as the pump strength, D0, is varied. The SALT equations are usually solved by introducing
a complete set of constant flux (CF) states at every outgoing frequency by making use of
the quantization provided by the outgoing boundary condition [14], however direct solution
methods are also possible [23]. The SPA-SALT equations used here are most easily derived
from the CF-state formulation [14].

Unfortunately, the explicit numerical implementation of the outgoing boundary condition,
Eq. (3), can be challenging, especially in multiple dimensions, as it is frequency dependent.
Outgoing boundary conditions are usually implemented numerically in an implicit manner,
without directly specifying the outgoing frequency, through the use of an impedance matched
absorbing region surrounding the finite simulation domain [24]. This inability to specify an
arbitrary outgoing frequency makes it difficult for these implicit methods to solve for the basis
of CF states needed for the SPA-SALT approximation. Instead, without adding gain to the
cavity, using such an implicit outgoing boundary condition naturally yields the passive cavity
resonances (as a subset of all of the modes of the finite system); the resonances satisfy

[

(∇ × ∇× ) − (εc (x) + εabs (x))
ω̃2
m

c2

]

ϕm (x) = 0, (4)

where ω̃m ∈ C is the (complex) frequency of the passive cavity resonance, and εabs (x) is the
impedance-matched absorbing boundary layer at the edges of the simulation domian. The pairs
{ω̃m , ϕm } constitute a countably infinite set, quantized by the Dirichlet boundary condition at
the edge of the finite simulation domain. The difference between the threshold lasing modes,
which can each be expressed as a single CF state, and the passive cavity resonances is critical
when considering line pulling effects from the gain medium, as the lasing frequency is not
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necessarily given by the real part of the passive cavity resonance. This distinction is especially
pronounced in low-Q “bad cavity” systems such as random lasers, where the width of the gain
curve can be much less than the decay rate of the cavity, γ⊥ � γc = −2Im[ω̃m] [25]. However,
for most traditional laser systems, γc � γ⊥, which results in negligible line-pulling effects, and
thus the frequencies and spatial profiles inside the cavity of the passive cavity resonances and
the relevant active cavity CF states are nearly identical [13].

The single pole approximation was derived as a simplified form of the SALT equations, and
makes use of the fact that the non-interacting lasing modes at threshold are each given by
exactly one CF state at the lasing frequency [13, 14]. Here, we exploit this similarity between
the dominant CF state for each lasing mode and the passive cavity resonances to derive the SPA-
SALT equations in terms of the passive cavity mode frequencies and spatial profiles, letting
Ψμ (x) = aμϕμ (x). The derivation of the resonance version of SPA-SALT is very similar to
the derivations using CF-states [14], so we will only highlight the major differences here, and
provide all of the equations necessary for numerical solution of the problem.

Assuming that we have used a separate numerical package such as COMSOL Multiphysics
to solve for the frequencies and spatial profiles of the passive cavity resonances, we renormalize
the modes over the volume of the cavity, rather than the entire simulation domain, as

∫

C

εc (x)ϕμ (x)ϕμ (x)dx = 1. (5)

The passive cavity frequencies and spatial profiles can then be directly used in Eqs. (1) and (4)
to solve for the non-interacting lasing mode thresholds as,

D(μ) =

∣∣∣∣∣∣∣

(
Re[ω̃μ] − ωa + iγ⊥

γ⊥

) ⎛
⎜⎜⎜⎜⎝
ω̃2

μ − Re[ω̃μ]2

Re[ω̃μ]2

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣

(
1

f̄ μ

)

, (6)

in which the the pump overlap integral is given by

f̄ μ =
∣∣∣∣∣

∫

C

f (x)ϕ2
μ (x)dx

∣∣∣∣∣ , (7)

such that
∫

C
f (x)dx = V , the volume of the cavity. Note that the pump overlap integral did not

appear in the original formulation of SPA-SALT, where it was instead included in the solution
to, and normalization of the CF states.

The SPA-SALT approximation assumes the lasing modes and frequencies are known and
need not be obtained self-consistently (in the resonance approximation they are determined by
Eq. (4)). With this assumption Eqs. (1) can be inverted as in [14], to yield

D0

D(μ)
0

− 1 =
∑

ν

Γν Iν χμν , (8)

in which D(μ)
0 , Iμ = |aμ |2 are respectively the non-interacting lasing threshold and intensity of

the μth lasing mode, constrained to be positive. The modal overlap is given by

χμν =

∣∣∣∣∣

∫

C

ϕμ (x)εc (x)ϕμ (x) |ϕν (x) |2dx
∣∣∣∣∣ . (9)

Equation (8) combined with Eq. (4) are the fundamental equations of resonance SPA-SALT,
which yield the modal lasing thresholds, intensities and power-slopes above threshold (the
modal frequencies are assumed to be the real part of the passive cavity resonances). These
equations take into account the effects of gain competition through the interaction coefficients
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χμν , and the effects of a spatially varying pump through its appearance in the non-interacting
threshold equation, (6).

Despite the relative simplicity of Eq. (8), it does not immediately specify the number of
active lasing modes for any arbitrary pump value, and is instead dependent upon the non-
interacting threshold pump values. The interacting threshold pump values are determined from
their respective non-interacting values as,

D(μ)
int
=

1
1 − λμ D(μ) , (10)

in which λμ ∈ [0, 1] is the generalized mode competition parameter defined in [14],

λμ =

∑NL

ν=1 Aμν (cνD(μ) − bν )

1 −∑NL

ν=1 Aμνbν
, (11)

where we have used the definitions,

Aμν = Γν χμν , (12)

bμ =

NL∑

ν=1

(
A−1

)

μν
, (13)

cμ =
NL∑

ν=1

(
A−1

)

μν

D(ν)
. (14)

In the absence of mode competition, λμ = 0, and the interacting thresholds are identical to their
non-interacting counterparts, while λμ = 1 indicates gain clamping, where the μth mode never
reaches threshold. Finally, after calculating the interacting mode thresholds using Eqs. (10) and
(11), one can solve for the modal intensities of the lasing modes at any pump value as,

Iμ = cμD0 − bμ . (15)

Thus, using Eqs. (10) and (15), the above-threshold interacting semi-classical properties of
lasers can be calculated from the knowledge of the passive cavity resonances with little
additional computational effort.

Resonance SPA-SALT provides a convenient tool for studying any kind of cavity with a
complex geometry for which the resonances can be efficiently calculated numerically, e.g.
photonic crystal lasers or various kinds and shapes of microcavity lasers. Computationally,
solving the resonance SPA-SALT equations requires solving the sparse eigenvalue problem
given in Eq. (4) once for the passive cavity resonances, and then performing a few vector
multiplication operations. In contrast, the most efficient SALT algorithms require first resolving
a sparse eigenvalue problem for the lasing modes, before performing a similar number of vector
multiplication steps for each value of the above threshold pump, D0 [23]. As such, when
considering a uniform gain profile, the speedup provided by using resonance SPA-SALT is
given by the number of above threshold pump values that one would need to solve for using
SALT, which will usually yield at least an order of magnitude increase in performance. Once
the resonances are known, the effect of the spatial distribution of the pump can be included with
negligible computational effort through changing the parameter f̄ μ in Eq. (6). Optimization of
specific laser properties via non-uniform pumping can then be modeled. In the next section
we will apply this formalism to a specific case, the optimization of a chaotic cavity laser for
highly multimode operation; to validate the method we will compare the results of resonance
SPA-SALT with full SALT simulations.
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Fig. 1. (a-c) Plot of the modal intensity Iμ as a function of the pump parameter D0 for D-
shaped cavities with R = 5μm, n = 3.5, filled with a gain medium with a central wavelength
of λa = 1μm, and width γ⊥ = 30nm. Different choices of r0 are shown in each plot, (a)
r0 = 0.3R, (b) r0 = 0.5R, and (c) r0 = 0.7R. Solid lines show the direct calculation using
full SALT simulations, while dashed lines show resonance SPA-SALT results. The SALT
simulations were performed using 100 CF basis states, and were run to ∼6 lasing modes.
In (b), the SALT simulations terminate after seven lasing modes when the simulations
became too memory intensive to continue. (d-f) Plots of the generalized modal competition
parameter, λ, given in Eq. (11), for the same cavity. Different choices of r0 are shown in
each plot, (d) r0 = 0.3R, (e) r0 = 0.5R, and (f) r0 = 0.7R.

3. Results

3.1. Optimizing multimode behavior through passive cavity design

One way to design a low spatial coherence light source is to construct a laser with many
independent lasing modes [26–28]. If the cavity is sufficiently complex, each lasing mode has
a distinct spatial field pattern, and thus adding the emitted fields of many modes leads to a
reduction in the spatial coherence. As an initial comparison of the passive cavity formulation of
SPA-SALT with SALT, we choose to study chaotic “D-shaped” cavities which have recently
been shown experimentally to generate laser emission with low spatial coherence [28]. D-
shaped cavities consist of a disk with radius R, with a section removed along a chord
parameterized by r0, as shown in the inset of Fig. 1. These cavities are known to support chaotic
ray dynamics [29,30], such that if one neglects the out-coupling losses and considers the system
as an ‘ideal billiard,’ generic ray orbits for the D-shaped cavity cover ergodically the entire area
of the cavity.

Broadly speaking, there are three requirements that must be satisfied in the design of a laser
cavity suitable as an incoherent light source. First, there must be a large density of passive
cavity modes with similar Q-factors close to the atomic resonance, such that the device has
the potential for many lasing modes. Second, the lasing modes must have distinct transverse
fields patterns so that the total field tend to self-average (longitudinal modes of a linear cavity
do not have this property). Third, the mode-competition between these modes needs to be
minimized, so that all of these modes are able to reach threshold even in the presence of
other active modes. This is why random lasers and degenerate lasers are good candidates for
producing low coherence light sources, they have many modes with similar Q-factors, whose
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Fig. 2. Plot of the non-interacting (dashed lines) and interacting (solid lines) modal
thresholds for the first 10 lasing modes for a D-shaped cavity with R = 5μm, n = 3.5, filled
with a gain medium with a central wavelength of λa = 1μm, and width γ⊥ = 10nm using
different pump profiles calculated using SPA-SALT with the passive cavity resonances
generated by COMSOL Multiphysics. The thresholds for the uniform pump are shown
in red and those generated using a genetic algorithm to minimize Eq. (16) are in green. For
the inhomogeneous pumping scheme, there are 12 independent electrical contacts which
divide the cavity radially in two, and angularly in eight.

spatial profiles are uniformly distributed throughout the cavity, effectively minimizing gain
competition [26, 27, 31–33]. For comparison, perfectly circular disk lasers are a poor choice
for a low-coherence laser. While disk cavities do support many high-Q modes, these are all
whispering gallery modes and are localized at the edge of the cavity, which leads to large mode
competition, such that only a few of these modes reach threshold.

The chaotic ray trajectories of the D-shaped cavities result in passive cavity resonances whose
spatial profiles are relatively uniformly distributed across the cavity, leading to a narrow distribu-
tion of Q values and no very high Q modes with special geometry. Nonetheless, the high index
mismatch at the boundary is sufficient to bring the lasing threshold into a reasonable range.
Thus, optimizing multi-mode behavior in such a cavity depends upon reducing the effects of
mode competition, which can be calculated exactly using SALT, and estimated with resonance
SPA-SALT. In Fig. (1) we calculate the modal intensities (a)-(c), and generalized modal
competition parameters, λ (d)-(f), using the passive cavity mode profiles compare this to full
SALT simulations of the same cavity. Semi-quantitative agreement is seen between these two
different computational methods, and both calculations independently agree on the geometry
of the D-shaped cavity, r0 = .5R, which minimizes the effects of mode competition, and thus
produces the most lasing modes for similar values of the pump. However, full SALT simulations
of the cavity in this multi-mode regime require hundreds of hours of computational time to
both generate the necessary CF basis states and solve the coupled non-linear equations above
threshold, while the resonance SPA-SALT calculations require mere minutes after calculating
the passive cavity resonances.

3.2. Enhancing multi-mode behavior with non-uniform pumping

Having now demonstrated that resonance SPA-SALT agrees semi-quantitatively with the exact
theory, one can use SPA-SALT as part of an optimization scheme to guide laser design. In
this section, we explore the effects of non-uniform pumping on chaotic cavities to further
increase their multi-mode behavior, and demonstrate that resonance SPA-SALT is compatible
with existing non-linear optimization methods.
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To begin, we consider a D-shaped cavity with independently tunable electrical contacts
providing the current to the gain medium {pi }, which yields a spatially inhomogeneous gain
profile in Eq. (7). (We assume there is no significant gain diffusion in the medium.) These
electrical contacts are segmented both angularly and radially, but together cover the entire cavity.
Most non-linear optimization techniques work to minimize a fitness function with respect to an
array of inputs, and so to optimize a pump profile for NL lasing modes we choose the fitness
function, F, to be

F ({pi }) =
NL∏

n=1

D(n)
adap ,int

D(1)
uni

, (16)

where D(1)
uni

is the threshold of the first lasing mode with uniform pumping, and the

interacting thresholds, D(n)
adap ,int

, with non-uniform pumping are listed in ascending order. The

normalization of 1/D(1)
uni

is chosen for numerical stability. Using this fitness function, non-
uniform pumping is found to enhance the multi-mode behavior of chaotic cavities, as shown
in Fig. 2 in green. Here, we have used a genetic algorithm to perform this optimization, and see
that the total pump power required to achieve NL = 10 lasing modes can be reduced by over a
factor of 2.

3.3. Reducing multi-mode behavior with non-uniform pumping

To demonstrate the flexibility of the pump optimization method for a given system, we
now change our desired target for optimization, and try to inhibit multimode lasing through
non-uniform pumping of a similar D-shaped cavity. This type of pump control has been
demonstrated in previous work [3–6], although not with this method and not in such a highly
multimode cavity as this. In Fig. 3, we show the modal intensities as a function of pump strength
calculated using SALT (solid lines), and resonance SPA-SALT (dashed lines), where the passive
cavity resonances have again been calculated using COMSOL Multiphysics. Here, we have
chosen to use r0 = 0.5R to show that we can control the number of modes even for cavities with
highly multimode behavior, but the results presented here are similar for other values of r0. In
the left panel of Fig. 3, we show the results for uniform pumping, wherein the first two lasing
modes are seen to have similar thresholds, indicating that the effects of mode competition are
weak.

However, as shown in the right panel of Fig. 3, by changing the pump profile of the cavity to
have the same overall gain but an inhomogeneous distribution, the effects of mode competition
can be increased, resulting in a substantially increased range of single mode operation. Here we
have chosen to optimize the pump profile to promote single mode lasing while maintaining the
same lasing threshold to facilitate switching between single-mode and multi-mode behavior. To
do so, we are instead using a fitness function to both select for the same lasing threshold as the
uniformly pumped cavity, while increasing the interacting threshold of the second mode relative
to the first,

F ({pi }) =
D(1)

adap

D(2)
adap ,int

+

∣∣∣∣∣∣∣∣
1 −

D(1)
adap

D(1)
uni

∣∣∣∣∣∣∣∣
. (17)

Thus, for the same cavity as is shown in the left panel of Fig. 3, the regime of single mode
operation can be increased by a factor of 4. In both simulations, we see semi-quantitative
agreement between SALT and resonance SPA-SALT for all of the important quantities, the first
lasing threshold, the interacting second lasing threshold, the power slopes, and the full spatial
profiles of the modes within the cavity, though in the case of uniform pumping, the spatial
profiles of the first and second modes are switched between the two computational methods.
Again, the full SALT simulations are found to require substantially increased computational
time when compared against the resonance SPA-SALT method.
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Fig. 3. Plots of the modal intensities, Iμ , given in Eq. (15), for a D-shaped cavity with
R = 4μm, r0 = 2μm, n = 3.5, filled with a gain medium with a central wavelength of
λa = 1μm, and width γ⊥ = 10nm. Solid lines show the direct calculation using full SALT
simulations, while dashed lines show the SPA-SALT results generated using passive cavity
information generated by COMSOL Multiphysics. (Left panel) Uniformly pumped D-
shaped cavity, as indicated in the inset. (Right panel) Inhomogeneously pumped D-shaped
cavity, as indicated in the inset. Here, the pump profile has been optimized using Eq. (17) to
increase the range of single mode operation while maintaining the same threshold pump as
the uniformly pumped cavity. There are 23 electrical contacts here, which divide the cavity
radially in three, and angularly in ten.

4. Summary

In conclusion, we have demonstrated that non-linear properties of above threshold lasers with
Q > 100 can be calculated using knowledge of the passive cavity resonances and the resonance-
based SPA-SALT equations. These results show semi-quantitative agreement with the full SALT
simulations, for all of the semi-classical properties of lasers of interest, non-interacting and
interacting modal thresholds, power slopes, and mode profiles. Using resonance SPA-SALT, we
were then able to increase the multi-mode behavior of chaotic D-shaped cavities, demonstrating
a potential role for selective pumping in the development of improved incoherent laser light
sources. We note that, due to fabrication imperfections, often the goal of device optimization
methods is to inform the experimental design process, not necessarily to achieve a highly
accurate quantitative prediction for results. For the purpose of this type of exploratory device
design, resonance SPA-SALT is able to provide the same insights as full SALT simulations, but
using widely available software for resonance calculations in conjunction with an open source
implementation of the method derived here.
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