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Multimode lasing in wave-chaotic semiconductor microlasers
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We investigate experimentally and theoretically the lasing behavior of dielectric microcavity lasers with
chaotic ray dynamics. Experiments show multimode lasing for both D-shaped and stadium-shaped wave-chaotic
cavities. Theoretical calculations also find multimode lasing for different shapes, sizes, and refractive indices.
While there are quantitative differences between the theoretical lasing spectra of the stadium and D-cavity, due
to the presence of scarred modes with anomalously high-quality factors, these differences decrease as the system
size increases, and are also substantially reduced when the effects of surface roughness are taken into account.
Lasing spectra calculations are based on steady-state ab initio laser theory, and indicate that gain competition is
not sufficient to result in single-mode lasing in these systems.
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I. INTRODUCTION

There has been a great deal of interest in the properties of
dielectric microcavity lasers or resonators based on quasi-two-
dimensional cavities, for which different boundary shapes can
generate chaotic, mixed, or regular ray dynamics [1], with
corresponding implications for the resonant wave solutions
and lasing modes of such cavities. We will use the term
wave-chaotic cavity to refer to cavity shapes for which the ray
dynamics based on specular reflection of rays at the boundary
and neglecting refractive escape satisfy standard definitions
of chaotic or partially chaotic dynamics [2]. The motivation
for this work arises from recent experimental results and
theoretical arguments concerning semiconductor microlasers
with fully chaotic ray dynamics (i.e., no stable periodic orbits
or quasiperiodic Kolmogorov-Arnold-Moser, or KAM orbits),
and in this article we will only consider cavity shapes with
either fully chaotic ray dynamics or with fully integrable
ray dynamics (such as the ellipse). The circumstances under
which a laser exhibits single-mode or multimode lasing is both
a fundamental question of laser physics, and, as discussed
below, of significant practical importance since it impacts
the spatial coherence properties of the emission in a man-
ner which can impair or facilitate imaging applications. It
should be emphasized that we do not concern ourselves with
the temporal dynamics, which for semiconductor lasers can
be unstable or chaotic for a number of reasons [3], and in the
theoretical work presented below we confine ourselves to the
study of single-mode or multimode steady-state solutions of
the laser equations.

*Corresponding author: douglas.stone@yale.edu

The earliest dielectric cavity lasers were microdisk lasers
with whispering gallery type high-Q modes confined by total
internal reflection [4]. Not long after these first microdisk
lasers were demonstrated, the idea of deforming the res-
onator boundary to noncircular shapes was introduced [5,6]
to explore the implications of fully or partially chaotic ray
dynamics on the wave solutions and lasing properties. A
major focus of this earlier work was on obtaining directional
emission from smoothly deformed cavity shapes, and on using
properties of the phase space of the ray dynamics to predict
and control the emission patterns [7–9]. In addition, many
of these early studies considered laser cavities much larger
than the wavelength for which one could not resolve indi-
vidual lasing lines, motivating a statistical treatment via ray
escape models. However, when wave-chaotic microcavities
with sizes of the order of the wavelength were fabricated and
studied [10,11], the lasing spectrum was generally found to
be multimode [12,13]. The nature of their lasing modes and
their relationship to passive cavity modes and the classical ray
dynamics have been studied extensively [1].

Motivated by wave-chaotic and random microcavity lasers,
the steady-state ab initio laser theory (SALT) was devel-
oped starting in 2006 [14–19], an approach which can be
employed for arbitrary complex geometries and yields the
active mode spectra of microcavity lasers. SALT is based on
the stationary inversion approximation (SIA), which becomes
reasonable for sufficiently small cavities, as emphasized first
by Fu and Haken [20]. The quantitative validity of SALT for
microlasers in the appropriate regime has been confirmed by
comparison with full time-dependent solutions of the two-
level and multilevel semiclassical laser equations [21]. The
theory is designed to describe multimode steady-state lasing
and takes gain competition and gain saturation into account
to all orders, within the SIA. SALT and a further “single-pole
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approximation,” known as SPA-SALT, has been used to study
how spatially selective pumping can be used to control the las-
ing spectra of wave-chaotic, random, and circular microlasers
[17].

More recently, wave-chaotic cavity lasers or random lasers
have been proposed and demonstrated by several of the
authors as novel bright sources emitting spatially incoher-
ent light for imaging and microscopy applications [22–25].
For these applications, wave-chaotic GaAs D-cavity lasers
with sizes of the order of 102–103 μm and pulsed elec-
trical pumping were tested and compared to circular disk
and Fabry-Perot cavity lasers fabricated in a similar manner
[22]. Speckle contrast measurements of the D-laser emission
indicated NM ∼ 102–103 lasing modes with distinct spatial
profiles, many orders of magnitude greater than the number of
spatial modes found in traditional lasers such as Fabry-Perot
broad-area lasers of comparable surface area. The incoherent
superposition of so many different spatial modes results in
low spatial coherence which suppresses coherent artifacts. It
was thus argued that wave-chaotic microlasers were particu-
larly good devices for generating highly multimode, spatially
incoherent lasing emission since they exhibit many spatially
distinct modes with similar Q factors, and their modes have
specklelike intensity distributions filling the entire cavity,
utilizing the entire available gain medium.

Very different lasing behavior was found by Sunada et al.
in other recent experiments with stadium-shaped GaAs micro-
lasers of a somewhat smaller size. In Ref. [26] it was found
that the stadium microlasers transitioned from multimode
lasing when pumped with very short pulses to single-mode
lasing for pump pulses longer than 100 μs. Experiments in
the steady-state regime [27] with continuous wave (cw) pump-
ing showed single-mode lasing for the wave-chaotic stadium
lasers, whereas multimode lasing was found for elliptical
microlasers, which have integrable ray dynamics since an
elliptical billiard features a second constant of motion [28]
in contrast to the stadium and D-cavity. The authors argued,
based on numerical calculations, that the modes of wave-
chaotic resonators overlap so strongly in space that their
cross gain saturation results in single-mode lasing, whereas
whispering gallery modes with different radial quantum num-
bers in the elliptic resonator have small enough overlap to
allow multimode lasing. Subsequent theoretical and numerical
work indicated that single-mode lasing may be typical for
wave-chaotic microlasers in certain parameter regimes [29].
These two sets of experiments (Refs. [26,27] and Ref. [22])
raise fundamental questions about the lasing dynamics of
wave-chaotic semiconductor microlasers, and the aim of this
article is to elucidate the influence of different experimental
parameters and physical mechanisms on the number of lasing
modes given that the microlasers used in the two sets of
experiments are very similar, though not identical. In partic-
ular, we consider the effects of mode competition, the size,
refractive index, and surface roughness of the cavities, as well
as nonuniversal features of different wave-chaotic resonator
geometries.

In the first part of the article we present experimental
measurements of the lasing spectra of both D-cavity and
stadium-shaped wave-chaotic GaAs microlasers with time
resolution in order to address the questions raised above.

100 µm(a)

100 µm

(b)

500 nm

(d)

2 µm

(c)

FIG. 1. Top view SEM images of (a) a D-cavity with radius R =
200 μm and (b) a stadium cavity with L = 238 μm. (c), (d) Perspec-
tive SEM images of the curved sidewall of a D-cavity, highlighting
its verticality and low surface roughness.

In the second part of the paper we present the results of
SPA-SALT calculations that shed light on the role of mode
competition in wave-chaotic cavity lasers. It should be noted
that the microlaser cavities used in experiments are too large
to be directly simulated either by time domain or frequency
domain (e.g., steady-state) approaches. Moreover, SALT loses
quantitative validity when the lasing spectra become too dense
with increasing cavity size. Hence, our calculations do not al-
low quantitative modeling, but provide evidence and physical
insight into the role of wave chaos and mode competition in
multimode lasing.

II. EXPERIMENTAL RESULTS

We investigated edge-emitting GaAs quantum well semi-
conductor lasers fabricated from a commercial epi-wafer (Q-
Photonics QEWLD-808) by photolithography and dry etching
(see Ref. [30] for details of the fabrication process). Micro-
lasers in the shape of a D-cavity, a stadium, and an ellipse
were created. Scanning-electron microscope (SEM) images of
two cavities are shown in Figs. 1(a) and 1(b), respectively. The
dry-etching process ensured vertical sidewalls [see Fig. 1(c)]
and a low degree of surface roughness [see Fig. 1(d)].

The D-cavity shape is a circle with radius R from which a
segment has been cut off R/2 away from the center as shown
in the inset of Fig. 2(a). The stadium cavities considered in
this article consist of a square with side length L to which two
semicircles with radius L/2 are attached as shown in the inset
of Fig. 2(b). The ray dynamics of both cavity types is fully
chaotic [31,32]. The ellipse cavities we investigated have an
aspect ratio of b/a = 2 where a, b are the two diameters [see
inset of Fig. 2(c)]. Their ray dynamics is integrable.

The cavities were mounted on a large Cu block which
acted as a passive heat sink and pumped electrically with
2- to 500-μs-long pulses by a diode driver (DEI Scientific
PCX-7401). All experiments were performed at ambient tem-
perature. The laser emission from the cavities was collected
by an objective and transmitted to an imaging spectrometer
(Acton SP300i) with a multimode fiber bundle. An intensified
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FIG. 2. Lasing spectra integrated over a 2-μs-long pump pulse
with 500 mA pump current for (a) a D-cavity with R = 100 μm,
(b) a stadium with L = 119 μm, and (c) an ellipse with a = 127 μm
and b = 254 μm. The insets illustrate the geometry of the cavities.

CCD camera (ICCD, Andor iStar DH312T-18U-73) attached
to the spectrometer was used to measure the evolution of the
emission spectrum during a pulse with microsecond resolu-
tion. The experimental setup and measurement procedures are
described in more detail in Ref. [30].

The lasing spectra integrated over 2-μs-long pulses for
a D-cavity, a stadium, and an ellipse are shown in Fig. 2.
All three cavities have approximately the same area of
25 300 μm2 and hence the same resonance density. The spec-
tra for 500 mA pump current show multimode lasing with
about 20 peaks for all three geometries. The emission has
transverse electric (TE) polarization with the electric field
parallel to the cavity plane. Similar results were obtained for
cavities with two times larger linear dimension. The actual
number of lasing modes cannot be determined from the spec-
tra as our spectrometer cannot resolve closely spaced lasing
modes due to its finite spectral resolution. Nevertheless, the
appearance of multiple peaks in the emission spectrum clearly

TABLE I. Average threshold currents 〈Ith〉 and corresponding
threshold current densities 〈 jth〉 for cavities with the same size as
those presented in Fig. 2.

Cavity 〈Ith〉 (mA) 〈 jth〉 (A cm−2)

D-cavity, R = 100 μm 125 ± 6 494.6
Stadium, L = 119 μm 100 ± 2 395.5
Ellipse, a = b/2 = 127 μm 68 ± 4 269.6

evidences multimode lasing in D-cavities and stadia of this
size.

The threshold currents vary very little between cavities of
the same type and size, but depend on the cavity geometry.
An overview of the average threshold currents 〈Ith〉 for the
three cavity shapes shown in Fig. 2 is given in Table I. The
stadium cavities have somewhat lower thresholds than the
D-cavities. The ellipse cavities have clearly lower thresholds
than the two wave-chaotic cavities. In addition to lower
thresholds for lasing in the ellipse, the ellipse is observed to
have lower slope efficiency than the wave-chaotic cavities, as
would be expected for high-Q whispering gallery modes with
lower mode volume. We would, however, expect orders of
magnitude lower lasing thresholds for elliptical cavities due
to the existence of ideal whispering gallery modes (WGMs)
with ultrahigh Q factors. We attribute the observed moderate
difference in threshold to the small, but not negligible, surface
roughness. These results motivate a detailed study of how the
cavity geometry and surface roughness determine the passive
mode quality factors presented further below.

For a detailed understanding of the multimode lasing dy-
namics, it is important to take into account thermal effects.
The cavities heat up quickly during current injection, which
leads to a redshift of the gain curve and changes of the active
lasing modes during the pump pulse [30]. The temperature
and hence the emission spectrum gradually stabilize, how-
ever, over the course of longer pulses. A D-cavity with R =
200 μm and a stadium with L = 238 μm were pumped with
500-μs-long pulses at 800 mA pump current. The threshold
currents are Ith = 270 mA ( jth = 267.1 A cm−2) for the D-
cavity and Ith = 230 mA ( jth = 227.4 A cm−2) for the sta-
dium, respectively. Both cavities have approximately the same
area of 101 100 μm2. Excerpts of the spectrochronograms
of the D-cavity and the stadium measured with 1-μs time
resolution are shown in Figs. 3(a) and 3(b), respectively. After
more than 400 μs, the lasers have stabilized so well that the
emission spectrum does not change over the course of 10 μs.
It has also been verified that the lasers do not exhibit any fast,
nanosecond timescale dynamics [30]. Thus, a quasisteady
state of the lasing dynamics is reached. Even though thermal
equilibrium is not reached due to the lack of active cooling,
the remaining thermally induced fluctuations of the emission
spectrum with a timescale longer than 10 μs are several orders
of magnitude slower than the intrinsic dynamical timescales
of semiconductor lasers. Hence, a steady-state model such
as SALT is appropriate to investigate the interactions of the
lasing modes via the active medium in this regime.

The spectra of both D-cavity and stadium lasers at any
given time exhibit multiple lasing peaks as shown in the
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FIG. 3. Spectrochrongram of (a) a D-cavity with R = 200 μm and (b) a stadium with L = 238 μm during a 500-μs-long pulse measured
with 1-μs time resolution. The emission spectra show no discernible change over the course of 10 μs. The pump current was 800 mA in both
cases. (c) Emission spectrum of the D-cavity during the time interval 460–461 μs and (d) of the stadium during the time interval 450–451 μs,
showing multiple lasing peaks.

spectra in Figs. 3(c) and 3(d). It should be noted that the
actual number of lasing modes is higher than the number of
peaks observed in the spectra due to the finite resolution of the
imaging spectrometer. Both stadium and D-cavities evidently
always exhibit multimode lasing as proven by the presence of
several peaks in the spectra. Furthermore, the typical number
of lasing peaks is similar for both cavity geometries, and
there is no qualitative difference between the lasing spectra
of D-cavities and stadia.

The similarities between D-cavity and stadium lasers are
attributed to the common features of wave-chaotic modes in
these resonators. However, the lasing modes typically cor-
respond to the highest-Q modes, which may have different
characteristics than the majority of the resonance spectrum
in wave-chaotic cavities. Specifically, it is known that wave-
chaotic microlasers can exhibit lasing on localized scar modes
[33,34], which can have higher Q factors than expected from
statistical analysis of wave-chaotic lasers [35,36]. Such effects
will vary with the cavity shape and size and may be affected
significantly by surface roughness. Therefore, a detailed anal-
ysis of geometry-specific properties of wave-chaotic micro-
lasers as well as the effect of surface roughness on the mode
competition is needed to shed further light on the experimental
results.

III. THEORETICAL STUDY

The experimental results presented above are consistent
with earlier work by our group on wave-chaotic D-cavity
lasers [22], and provide more insight into the time evolution

of the lasing spectra. They confirm the qualitatively different
behavior of the lasers we have studied from those reported in
Refs. [26,27], and these different results present a challenge
to obtain a consistent understanding of the lasing behavior of
wave-chaotic semiconductor lasers. As noted earlier, there is
no possibility to simply perform ab initio integration of the
laser equations for two-dimensional (2D) complex cavities
with a size of over 100 μm. The largest cavities to be treated
by brute force integration are two orders of magnitude smaller
in linear dimensions [37–39] and thus have a four order of
magnitude smaller resonance density than the experimental
microlasers. Our partially analytic approach based on SALT
can do somewhat better, providing results for resonators on
a 60 μm scale, but with some caveats described below.
Thus, there is at present no absolutely rigorous computa-
tional method [40] to decide the validity of the conjecture in
Refs. [26,27,29] that fully wave-chaotic cavities are intrinsi-
cally single-mode lasers in steady state.

However, one can use existing methods for such lasers
at smaller scale to analyze the physical processes which are
known to determine the number of lasing modes. Multimode
lasing is known to result from the interplay between gain satu-
ration, which tends to clamp the gain once a single mode starts
lasing, and spatial hole burning, which refers to the spatial
nonuniformity of gain saturation in standing-wave cavities.
Near the intensity minima of a lasing mode there is only a
small field stimulating emission and the local inversion (gain)
is not saturated, and therefore continues to increase with
increasing pumping in such regions. This allows new, lower-Q
modes with different intensity minima or, more generally,
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weaker spatial overlap to reach threshold and begin lasing.
For example, in conventional stable resonators with Gaussian
modes, higher-order transverse modes have significant inten-
sity away from the optical axis of the resonator, and can thus
exploit distinct regions of the gain medium to lase in addition
to the fundamental transverse mode.

In wave-chaotic cavities, resonances tend to fill the entire
resonator with a specklelike intensity distribution. In Ref. [27]
it was proposed that significant spatial overlap of the intensity
distributions was the origin of single-mode lasing: wave-
chaotic modes always overlap so strongly that a single mode
clamps the gain in spite of spatial fluctuations of its intensity
distribution. The spatially extended nature of the intensity
distributions was argued to be the relevant difference between
a wave-chaotic shape, such as the stadium, and a non-wave-
chaotic shape with similar aspect ratio, such as the ellipse,
which showed multimode lasing. This conjecture apparently
contradicts the numerical results in Ref. [22] for D-cavity
lasers, which found eight lasing modes in a D-cavity with
area ≈63 μm2. Here, we extend the numerical studies of
Ref. [22] to study in more detail the conjecture that strong
gain clamping and cross saturation lead to single-mode lasing
in wave-chaotic microlasers.

The method we use, steady-state ab initio laser theory
(SALT), is an approach specifically developed to study mi-
crocavity lasers with complex geometries, and was used in
earlier works on microcavity lasers [14–17,21,41]. Not only
was SALT developed to treat complex 2D (and in principle
3D) cavities, it was also designed to deal with multimode
lasing and spatial hole burning quantitatively. SALT is a
semiclassical theory and does not include quantum fluctuation
effects, which are not relevant to this study. The version of
SALT most relevant to this work, and its limitations, are
described in detail in [17].

A. Review of steady-state ab initio laser theory

The SALT equations for steady-state multimode lasing are
derived from the semiclassical laser equations by neglecting
time-dependent nonlinear terms in the equations, which drive
oscillations in the inversion. They are a set of nonlinear wave
equations to be solved self-consistently with purely outgoing
boundary conditions, and have the form[

∇2 +
(

εc(x) + γ⊥D0(x)

ωμ − ωa + iγ⊥

× 1

1 + ∑NL
ν �ν |�ν |2

)
ω2

μ

c2

]
�μ(x) = 0, x ∈ C . (1)

They determine the number of lasing modes, their optical field
distributions �μ(x), and lasing frequencies ωμ. The approxi-
mation used to derive the SALT equations is that the inversion
density (which only appears implicitly in the SALT equations)
is time independent. The inputs to the SALT equations are the
dielectric function of the passive cavity εc(x), the dephasing
rate of the polarization γ⊥, the atomic transition frequency ωa,
and the external pump profile D0(x). For two-level atoms the
gain curve is Lorentzian and centered at ωa with width γ⊥. The
stationary inversion approximation (SIA) requires that γ⊥ and
the typical frequency spacing between lasing modes �ω are

much larger than the population relaxation rate γ‖. The latter
condition becomes harder to meet in the highly multimode
regime and for larger laser cavities. In the regime where the
SIA holds, excellent agreement is found between SALT and
full integration of the semiclassical laser equations [21].

Here, we have written the SALT equations as scalar equa-
tions since we consider modes with transverse magnetic (TM)
polarization, for which �ν corresponds to the z component
of the electric field. We have calculated Q factor distributions
for the TE modes and find qualitatively similar behavior to
that described below. The dielectric function is 1 outside
of the cavity region C. The number of nontrivial purely
outgoing solutions increases by one at each lasing threshold
as the pump D0 is increased starting from zero. The nonlinear
denominator represents the saturable gain susceptibility, and
enforces self-saturation and cross saturation of the gain in
a spatially varying manner, which takes into account spatial
hole burning exactly. The Lorentzian gain factor of mode
ν is �ν = γ 2

⊥/[(ων − ωa)2 + γ 2
⊥]. � and D0 are written in

dimensionless form in terms of the natural units of the electric
field ec = h̄

√
γ‖γ⊥/(2g) and the inversion dc = h̄γ⊥/(4πg2),

where g is the dipole matrix element of the transition.
Two main types of algorithms have been developed to solve

the SALT equations [14,17,18]. The first approach, which
is the basis for the algorithm used in this work, expands
the solution of the SALT equations in a complete set of
biorthogonal outgoing wave functions at a given frequency,
known as the threshold constant flux (TCF) states. One of
these TCF functions is the exact solution of the semiclassical
equations at the lasing threshold, denoted as the threshold
lasing mode (TLM); the others take into account the change
in the spatial pattern of the mode and its nonlinear frequency
shift above threshold. While this solution method is relatively
efficient compared to finite-difference time-domain (FDTD)
simulations [41], it is still quite computationally expensive
when applied to 2D wave-chaotic cavities, so we use two
further approximations to SALT which enable us to treat
larger laser cavities.

B. Single-pole approximation: SPA-SALT

The first one, the single-pole approximation (SPA-SALT)
[17], assumes that the field distribution and frequency of each
lasing mode are fixed to their values at threshold, as given by
the TLMs. Hence, as the pump is increased, only the overall
amplitudes of the modes change and need to be determined.
Moreover, since SALT neglects the beating of lasing modes,
the phases of the modes do not enter the solution, and one can
reduce the full SALT equations to the following equations for
the intensities Iμ of each mode as a function of the pump:

D0

Dμ
0

− 1 =
∑

ν

�νχμνIν, (2)

χμν =
∫

d2r �2
μ

∣∣�ν

∣∣2
. (3)

Here, the Dμ
0 are the noninteracting thresholds of the thresh-

old lasing modes (TLM), which reflect their Q factors and
their proximity to the gain center, but neglect effects of gain
competition. The coefficients χμν represent modal overlaps. In
general, they have a small imaginary part for high-Q modes,
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which we will neglect by using only the real part χμν ≈
Re[χμν]. We rewrite these equations as

D0

Dμ
0

− 1 =
∑

ν

AμνIν, (4)

Aμν = �νχμν . (5)

The matrix Aμν represents the cross-saturation interaction of
all pairs of lasing modes for a given value of the pump
power D0. Equation (4) is nominally linear, however, the set
of lasing modes to include at each pump value is not known,
and is determined implicitly by the nonlinear interactions
contained in the Aμν . The threshold of the first mode to turn on
is given directly by the TLM calculation, but subsequent mode
thresholds are determined by the constraint that all intensities
fulfill Iν � 0. Hence, we must search at each pump value for
the largest set of modes which yields positive-semidefinite
values for the Iν , and only then invert Eq. (4) using the
appropriate matrix Aμν . Between modal thresholds, when the
matrix Aμν is fixed, the nonzero Iν vary linearly with pump
and are given by

Iμ = cμD0 − bμ, (6)

cμ =
N∑

ν=1

(A−1)μν

Dν
0

, (7)

bμ =
N∑

ν=1

(A−1)μν . (8)

The solution over the full pump range of interest has a kink at
each of the thresholds Dμ

0,int , where the subscript int denotes
the threshold in the presence of modal interactions. These
interacting thresholds are given by [17]

DN
0,int = DN

0

[
1 +

N∑
ν=1

ANν

(
cνDN

0,int − bν

)]
. (9)

This equation follows from the condition that as the N th
mode turns on its intensity passes through zero from negative
values; the matrix A and the constants bν, cν then change
appropriately above this pump threshold. This approach has
been validated by comparing numerical results between the
SPA-SALT and full SALT methods [17].

C. Resonance SPA-SALT

The necessary first stage of a SPA-SALT calculation is the
calculation of the TLMs and their noninteracting thresholds
and frequencies. This can be done by tracking cavity reso-
nances and quasimodes as the gain increases until they reach
the real axis [17,18,41]. To avoid this step, recently Cerjan
et al. [42] proposed an analytic approximation for the evolu-
tion of poles as the pump increases, so that standard codes
for calculating passive cavity modes such as COMSOL can be
used. For high-Q modes, the lasing modes will differ little
from the passive cavity modes (within the cavity), and thus
the passive cavity modes can replace the TLMs in SPA-SALT.
We call the resulting method resonance SPA-SALT; a working
code for this method is available for download [43]. This
approach was used in our earlier work on D-cavity lasers and

was compared with results from full SALT, finding reasonable
agreement. We will use this method in this work to allow
us to consider even larger cavities and explore more of the
parameter space of interest. Resonance SPA-SALT expresses
the noninteracting thresholds needed for SPA-SALT in terms
of the complex frequencies of the passive cavity resonances

Dμ
0 =

∣∣∣∣
(

Re[ωμ] − ωa + iγ⊥
γ⊥

)(
ω2

μ − Re[ωμ]2

Re[ωμ]2
.

)∣∣∣∣. (10)

The lasing frequencies ωμ are approximated by the real part
of the passive cavity resonance frequencies, and lasing modes
within the cavity by the passive cavity mode field distribu-
tions.

IV. RESULTS

As noted, the number of lasing modes will be deter-
mined ultimately by the passive cavity mode Q factors, the
width γ⊥, and center ωa of the gain curve, and by the non-
linear interactions between modes due to gain competition
and saturation. The Q-factor distribution depends only on the
passive cavity geometry and refractive index; examples are
shown in Fig. 4. For resonance SPA-SALT the noninteracting
thresholds follow immediately from Eq. (10). The effects of
mode competition are assessed by analysis of the SPA-SALT
lasing equations and their predictions. We will explore both
aspects in the following section.

A. Lasing in wave-chaotic cavities and Q-factor distributions

We begin by examining the Q-factor distributions of two
resonator geometries, the stadium, and the D-cavity, that each
have completely chaotic ray dynamics [31]. The stadium
consists of a rectangle capped by two semicircles on two
opposite sides and is shown in the inset of Fig. 2(b). Its
aspect ratio is defined as the ratio between the length L of
the rectangle and the radius R of the semicircles ρS = L

R . Our
simulation results are for the aspect ratio ρS = 2, for which
the ray dynamics shows the highest degree of chaos, i.e., the
highest Lyapunov exponents [31]. The D-cavity, also known
as a cut circle, consists of a circle with a part cut off along a
single chord as shown in the inset of Fig. 2(a). We define the
cut parameter as the ratio of the distance from the center of the
circle to the chord d and the radius of the circle R, as ρD = d

R .
In our simulations we use ρD = 0.5, which also maximizes
the degree of chaos of its ray dynamics [32].

The simulation results for a stadium with 2L = 10 μm and
a D-cavity with R = 4.2 μm, which have approximately the
same area, and refractive index n = 3.5 are shown in Fig. 4.
Note that in later sections we show results for larger stadium
cavities, with a long axis as large as 2L = 60 μm. Figure 4(a)
shows the Q factors of the resonances as a function of the
wavelength λ in a wavelength window containing 1000 modes
for each resonator geometry. The stadium resonances are
indicated by black circles, whereas the D-cavity resonances
are indicated by red stars. As can be seen, the distribution of
Q factors for the D-shaped cavity is much more uniform than
that of the stadium, and does not possess any high-Q outliers.
The center wavelength of the window is chosen to be 1 μm,
which also corresponds to the center of the gain curve for
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FIG. 4. (a) Calculated spectrum (Q factors and wavelengths of passive cavity modes) for the stadium resonator, with 2L = 10 μm (black
circles), and D-cavity resonator, with R = 4.2 μm (red stars). The spectra contain 200 resonances each in a wavelength window centered at
λ = 1 μm. The stadium data show many resonances with higher-Q factors than the typical resonances, whereas the D-cavity data do not have
any significant outliers. (b) Distribution of the Q factors of 1000 resonances for the stadium resonator and the (c) D-cavity resonator. The
insets show the spatial field distributions of the resonances that support the first two lasing modes. The green lines highlight the scarring by the
double-diamond unstable periodic orbit and the triangle unstable periodic orbit two of the modes.

the lasing calculations below, λa = 2πc/ωa. The width of the
gain curve used in these simulations is γ⊥ = 50 nm. This is
considerably smaller than the wavelength window in which
we compute the resonances �λFW = 280 nm. Hence, the
simulation results include all the high-Q resonances relevant
to lasing.

Figure 4(b) shows the distribution of the Q factors of the
stadium. The bulk of the distribution shows resonances with
Q factors less than 2000. However, there are many outliers
with higher Q factors, and the inset shows the spatial patterns
of the first two lasing modes. The first lasing mode is based
on the highest-Q passive resonance (Q = 7096), and is well
localized on an unstable periodic orbit known as the double-
diamond orbit, a phenomenon known as scarring [44]. An im-
portant aspect is that all the reflections of the double-diamond
orbit have incidence angles equal to 45◦ and are thus contained
by total internal reflection (TIR) for n = 3.5. The second
lasing mode is based on a resonance with Q = 3263 and has
a more uniformly distributed spatial pattern. It does not have
the second-highest-Q factor (or second-lowest noninteracting
lasing threshold) as naively expected, so its order in the lasing
turn-on sequence is due to its weaker competition with the
first lasing mode compared to other potential lasing modes.
Their nonuniform spatial structure is what is expected for
scarred modes, and leads to their higher-Q values. Figure 4(c)
shows the distribution of the Q factors for the D-cavity, which
does not have any significant high-Q outliers. The inset shows
the spatial patterns of the first two lasing modes. The first
lasing mode is based on the highest-Q resonance (Q = 1567),
which does not show a strong localization pattern. However,
the second lasing mode is based on a resonance with much
lower-Q factor, Q = 1100, which is moderately scarred by the
triangle orbit. The incidence angles of the three reflections of
the triangle orbit are 47.0◦ and 21.5◦, respectively, and thus
this orbit is also contained by TIR for n = 3.5.

Since gain competition does not influence the threshold of
the first lasing mode, the ratio of 4.5 between the highest-Q
resonances of the stadium and the D-cavity should lead to a
substantially lower lasing threshold for the stadium compared

to the D-cavity. Taking into account the wavelength of the
highest-Q modes with respect to the gain center yields an
about 4.6 times lower threshold for the stadium compared to
the D-cavity. However, experimentally the stadia had an only
1.25 times lower lasing threshold (see Table I). The similarity
of the measured thresholds for stadia and D-cavities could,
however, be explained by the fact that the high-Q scarred
modes in the stadium do not exist in much larger cavities or
when surface roughness is added as shown further below.

The Q-factor distributions shown here are representative of
our results using different wavelength windows and central
wavelengths. Moreover, our wavelength window is chosen
large enough to contain typical high-Q resonances. For ex-
ample, the free spectral range (FSR) of modes localized on
the shortest periodic orbits (with length 
) in each shape is
λFSR = λ2

2n

= 28.5 nm for the stadium and λFSR = 22.7 nm

for the D-cavity. The high-Q scarred modes correspond to
even longer orbits and shorter FSRs, so they are always
contained for different central wavelengths λa.

B. Lasing and modal interactions

Performing SPA-SALT calculations with the resonance
data shown in Fig. 4, we obtain the thresholds, number of
lasing modes, and mode intensities as a function of pump for
a stadium and a D-cavity laser with the same area. Consistent
with our expectations and the results of Ref. [22], both the sta-
dium and the D-cavity lasers exhibit multimode lasing, even
with this small size and the full inclusion of gain competition
through cross saturation in the calculations. However, the
rather different Q-factor distributions of the two wave-chaotic
cavities lead to quantitatively different behavior as shown in
Fig. 5. For the stadium resonator, only two modes start lasing
within a factor of 10 of the first lasing threshold, whereas for
the D-cavity resonator there are eight lasing modes within a
factor of 10 of its first lasing threshold. As already noted, the
lasing threshold for the stadium of this size, shape, and index
is ∼4.6 times lower than for the D-cavity laser, but here we
are comparing the number of lasing modes within the same
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FIG. 5. (a) Resonance SPA-SALT results for the lasing intensities of the stadium resonator, with 2L = 10 μm, as a function of the pump
strength. There are two lasing modes that turn on within a factor of 10 of the first lasing threshold. The lasing interactions prevent more
modes from turning on in this interval. (b) Resonance SPA-SALT results for the lasing intensities of the D-cavity resonator, with R = 4.2 μm,
as a function of the pump strength. There are eight lasing modes that turn on within a factor of 10 of the first lasing threshold. The lasing
interactions are not strong enough to prevent the first seven lasing modes from turning on within a factor of 2.0 of the first lasing threshold.
The gain spectrum width used in the simulations is 50 nm.

relative range of pump for the two shapes. As we increase
the normalized pump strength beyond 10, we find that a few
more modes turn on for the stadium, reaching six modes. But,
beyond a certain pump strength, no additional lasing modes
turn on; this phenomenon is known as “gain clamping” and
has already been reported before in wave-chaotic resonators
[16,17].

Thus, our results show that cross saturation strongly limits
the number of lasing modes in wave-chaotic lasers, but does
not lead to single-mode lasing at high relative pump values
in any case we have studied. If one mode turns on very
early because of its anomalously high-Q factor, then it is
able to saturate the gain substantially before other modes are
close to threshold, leading to fewer modes lasing, as in the
stadium. For the refractive index n = 3.5 considered so far,
the stadium has such outlier modes and the D-cavity does not,
leading the latter to have more lasing modes. However, this
effect depends on the refractive index, and Table II shows
that for n = 2.5 the stadium has more lasing modes within

TABLE II. Number of lasing modes within a factor of 10 of
the first lasing threshold and number of lasing modes when gain
clamping sets in for the stadium resonator, 2L = 10 μm, and D-
cavity resonator, R = 4.2 μm, with different refractive indices.

Resonator n Lasing modes Gain clamping limit

Stadium 3.5 2 6
D-cavity 3.5 8 8
Stadium 3.0 8 9
D-cavity 3.0 14 14
Stadium 2.5 5 5
D-cavity 2.5 4 6

the initial factor of 10 of relative pump values. The different
numbers of lasing modes that we find here for stadium and
D-cavity lasers result from nonuniversal effects of scar modes
on short periodic orbits with anomalously high-Q factors in
the tails of the Q-factor distributions. Such effects cannot
be described by statistical theories [45,46]. In the following,
we explain the different number of lasing modes for stadium
and D-cavity lasers by detailed analyses of the cross-gain
saturation. Furthermore, we show that the nonuniversal effects
due to high-Q scar modes become weaker for larger cavities
and when surface roughness is added.

C. Cross-gain saturation

The nonuniversal variation of the number of lasing modes
led us to examine the interaction coefficients to see if the
results can be explained by cross saturation. SALT shows us
that the quantity which represents modal interactions between
lasing modes is the SALT interaction coefficient χ̃μν , which
we define as

χ̃μν =
∣∣∣∣
∫

C dx �μ(x)�μ(x)|�ν (x)|2∫
C dx �μ(x)�μ(x)|�μ(x)|2

∣∣∣∣ . (11)

Note that mode μ starts lasing before mode ν and that the
denominator of Eq. (11) normalizes the interaction coeffi-
cient by dividing it by the self-interaction χμμ of the mode
that started lasing first. Furthermore, we have omitted the
Lorentzian factor �μ in Aμν , which depends on the relative
location of the gain center.

We calculated the SPA-SALT interaction coefficients for
all pairs of modes that start lasing up to the onset of gain
clamping. Note that the coefficients describe both the inter-
action between a pair of modes where both of the modes are
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FIG. 6. Normalized SALT interaction coefficients [Eq. 11] for (a) stadium and (b) D-cavity. (a) For the stadium, the interaction between
modes No. 1 and No. 4 is higher than the interaction between modes No. 1 and the other lasing modes, Nos. 2,3,5,6, due to their strong spatial
overlap (as shown in the inset, top mode No. 1, bottom mode No. 4). (b) For the D-cavity, the interactions are overall more uniform than for the
stadium. Modes which have similar spatial patterns form two groups: modes 1, 6, 7 and modes 2,3,4,5,8. The insets show the spatial distribution
of the electric field for the lasing mode No. 1 (top) and lasing mode No. 6 (bottom). This pair has the highest SALT interaction coefficient for
the D-cavity. The cavities have identical index (n = 3.5) and identical surface area, corresponding to a stadium length of 2L = 10 μm.

lasing, as well as the effect of a lasing mode on a
below-threshold mode before the below-threshold mode
reaches threshold. The values shown for the stadium
resonator, Fig. 6(a), and the D-cavity, Fig. 6(b), show
that there is significant modal interaction and that it has an
important effect. For instance, for the stadium, lasing mode
No. 4 does not turn on immediately after the first lasing
mode as it would have done in the absence of interactions
because of its relatively strong interaction with mode No. 1
(compared to other modes). Indeed, as shown in the insets,
their electric field spatial patterns are very similar, leading to
strong cross-saturation of mode No. 4 by mode No. 1. Note
that these are the two highest-Q modes in the distribution and
that they are both strongly scarred by the double-diamond
periodic orbit. This demonstrates that our results on lasing
modes and thresholds are consistent with the expectations for
spatial-hole burning and cross-saturation effects. For both the
stadium and the cavity, the interactions influence significantly
the order in which modes start to lase.

In the case of the D-cavity, the interaction coefficients are
more uniform, but there is a strong hole-burning interaction
between modes No. 1 and No. 6. Even though these modes are
not strongly scarred by a single periodic orbit, the insets show
a nonuniform spatial pattern as well as a strong similarity
of their electric field intensity distributions. In fact, there is
a weak pseudocaustic structure in the D-cavity modes which
we will discuss elsewhere [47]. It appears that the main effect
of the absence of high-Q scarred modes in the D-cavity is
to allow more modes to lase simultaneously. The D-cavity
hence appears to have a Q-factor distribution closer to that
expected for an ideal wave-chaotic cavity, as described in
Ref. [46].

D. Subthreshold intensities

Not only does spatial-hole burning and gain saturation
control the order in which lasing modes turn on, even more
importantly it limits their total number. SPA-SALT allows
to study the interaction with modes below threshold, which
determine when and if a given mode turns on. As noted above,
the interacting threshold for a given mode N corresponds to
the pump value at which its intensity passes through zero.
So, just below this threshold, if we expand the size of the
(N − 1) × (N − 1) matrix Aμν , we find that in addition to
the positive intensities of the N − 1 lasing modes, SPA-SALT
predicts that mode N has a small negative intensity, approach-
ing zero with positive slope as the pump increases. While
this negative intensity is unphysical, its distance below zero,
combined with its slope, is a measure of the proximity of the
mode from threshold. Hence, we introduce here subthreshold
“intensity” plots to analyze further the effect of modal inter-
actions on modes below threshold.

As noted above, we compute the subthreshold negative
intensities by enlarging the SPA-SALT matrix Aμν of the
lasing modes given in Eq. (4), at a given value of the pump,
with each of the subthreshold modes of interest. Between
the lasing thresholds these intensities vary continuously and
linearly as well as the above threshold modal intensities. As
one of the subthreshold modes reaches zero intensity and turns
on, it is added to the physical matrix Aμν of the lasing modes.
When this happens, all other subthreshold modes experience
a (typically negative) change of their slope and intensity. This
behavior contrasts with the above threshold, physical modes,
which must have continuous intensities as the number of
modes increases, although they also have a discontinuity of
their slope at the thresholds.
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FIG. 7. Resonance SPA-SALT results for the subthreshold intensities of the (a) stadium and the (b) D-cavity as a function of the pump.
The black dashed lines show the intensity variation neglecting modal interactions and intersect the x axis at the noninteracting thresholds.
The colored lines show the subthreshold intensities of the same modes when including the effects of interactions. The resonance SPA-SALT
approximations ensure that the subthreshold intensities are linear between adjacent thresholds, with discontinuities of both their value and
slope at the interacting thresholds, which are marked by the colored arrows. The dashed vertical lines serve as a guide for the eye and connect
the values of the subthreshold intensities immediately before and after a new threshold is reached. The gain curve width used in the simulations
is 50 nm. The cavities have identical index (n = 3.5) and identical surface area, corresponding to a stadium length of 2L = 10 μm.

This threshold effect is calculated separately for each of
the nonlasing modes as a way of characterizing the modes
that are suppressed from lasing, resulting in a plot of the
type shown in Fig. 7. It shows the evolution of the “negative
intensities” of several nonlasing modes as the various lasing
modes turn on. The arrows on the top of the figure mark
the thresholds of the lasing modes at which the (negative)
values of the intensities of the subthreshold modes have a
discrete jump. Note that all of the intensity jumps as well
as the slope changes are negative, indicating that each new
lasing mode typically reduces the gain for all other modes.
Since the evolution of the subthreshold intensities is linear
between thresholds, if the intensity slope of a mode turns
negative, this mode will never turn on, no matter how strong
the pump becomes (barring the very rare, but not forbidden
event that another mode turning on increases its gain, which
is not observed in Fig. 7). When all subthreshold modes have
negative slopes, no further mode can turn on and we have
reached the gain-clamping regime.

Figure 7(a) shows the subthreshold intensities for the
stadium. The black dashed lines show the behavior of the
intensities in the absence of interactions; for this case, nine
lasing modes would turn on within a factor of 3.5 of the
first threshold. However, once the first lasing mode turns on,
the modal interactions decrease the values and slopes of the
subthreshold intensities of the other modes so only one more
mode turns on. When the second mode turns on, most of
the remaining modes obtain negative slopes, so that they can
never turn on. Among the modes shown, only the cyan and
blue modes in the upper right part of the plot can still turn

on, but they get pushed up to thresholds that are many times
higher than their noninteracting values which are off the range
of the plot.

Figure 7(b) shows a similar plot of the subthreshold inten-
sities for the D-cavity. For this case, 12 lasing modes would
turn on within a factor of 2.0 of the first threshold in the
absence of any interactions. While the threshold of the first
mode immediately pushes some of the modes down in inten-
sity, none acquire a negative slope, and the three other modes
close to threshold turn on almost immediately, with three more
modes turning on within a factor of 2.0 of the first threshold.
Only then are the cumulative interactions sufficiently strong to
keep other subthreshold modes from lasing. This plot clearly
shows the effect of the D-cavity having high-Q modes that
are closer in their Q factors compared to the stadium with its
outliers in the Q-factor distribution: the first mode does not
have enough intensity to suppress other modes before they
turn on. However, there are still sufficiently strong interaction
effects to keep a number of other modes from lasing and
push others to much higher thresholds. Thus, as discussed in
Ref. [22], the total number of lasing modes in steady state
is a function of both the Q-factor distribution of the passive
cavity modes and the gain competition interactions in the
active cavity.

Whereas the results presented so far were computed for
resonators with refractive index n = 3.5 (near the experimen-
tal value of n ≈ 3.37), the lasing behavior shows significant
dependence on the refractive index, as summarized in Table II.
In particular, the few-mode lasing behavior observed for the
stadium with n = 3.5 is not robust against a change of the
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refractive index, and for different simulation parameters we
see significantly more lasing modes. For the stadium with
n = 2.5 there are five lasing modes within a factor of 10 of
the first lasing threshold, and eight lasing modes in the same
range for n = 3.0. Moreover, none of the simulation results
show single-mode lasing. We conclude that while the number
of lasing modes depends on the specific value of the index of
refraction of the resonator, multimode lasing is observed for
all physically relevant refractive indices.

E. Dependence on the size of the wave-chaotic resonators

Our simulation results for a stadium with long axis 2L =
10 μm (area 44.6 μm2) and a D-cavity of equal area with
n = 3.5 predict a significant difference between the absolute
lasing thresholds of the stadium and the D-cavity lasers due to
the ∼4.5 times larger Q factor of the highest-Q mode in the
stadium compared to that of the D-cavity. This difference, if
it could be extrapolated to the larger cavities studied experi-
mentally, would be clearly observable, whereas only a ∼1.25
times lower threshold for the stadium was observed. Naively
one expects Q factors to increase linearly with the linear
dimensions of the cavity since the Q factor is given by the
ratio of energy stored in the resonator, which is proportional to
the area, by the energy radiated during one oscillation period,
which is proportional to the circumference of the cavity.
Moreover, a typical Q factor for long-lived modes can be ob-
tained by ray-tracing calculations. For chaotic ray dynamics,
the distribution of escape times will decay exponentially after
a short transient regime, and the slope of this decay represents
a classical escape rate (or inverse escape time, which can be
translated into a Q factor) [47]. This “classical” Q value is
indicated by the vertical dashed lines in Fig. 8, and indeed
increases linearly with the linear size of the cavity.

However, it is not clear that the linear scaling just men-
tioned applies to scarred modes, which are sensitive to the
ratio of cavity size and wavelength. In fact, it is known
that the scarred electric field of a periodic orbit in a given
mode field distribution tends to decrease in the semiclassical
limit, i.e., when the cavity size becomes much larger than the
wavelength [48]. Furthermore, the Q factors of scar modes can
depend sensitively on interference effects and hence the ratio
of cavity size and wavelength [12]. We therefore studied the
evolution of the Q-factor distributions of stadium and D-cavity
resonators with the cavity size to see if the Q factors of high-Q
scar modes scale linearly with the cavity size, as well as how
the ratio between the highest-Q factors of the distributions
evolves.

We studied stadia with linear dimensions two and six
times larger than those in Fig. 4, with the same refractive
index n = 3.5. The three histograms in Fig. 8 show the Q-
factor distributions for stadia with increasing size, where the
long axis 2L equals to 10, 20, and 60 μm, respectively. The
insets show the electric field distribution of the corresponding
highest-Q modes. We observe that most of the high-Q modes
have a Q factor increasing with size, but only sublinearly.
In addition, the Q-factor distributions narrow at both the
high- and low-Q tails, comprised in the stadium by scarred
modes (high-Q factors) and bouncing ball modes (low-Q
factors). The dashed red vertical lines in the distributions

mark the value of the average Q factor of the most long-lived
trajectories obtained from ray-tracing simulations [2,49,50].
As expected, for each distribution this value is higher than
the mean of the distribution but lower than a significant
number of the high-Q modes. The inset of Fig. 8(b) shows
the decrease in the normalized standard deviation of the three
distributions, summarizing the narrowing of the distribution
with increasing size. Examining in detail the field distributions
of the highest-Q modes [insets of Figs. 8(a) and 8(c)], we
notice a significant reduction in scarred electric field intensity
as the linear size of the resonator increases, i.e., the electric
field intensity enhancement along the double-diamond orbit is
smaller for the larger stadium.

Figure 8(d) summarizes the evolution of the Q-factor vari-
ations with size: we plot the highest-Q factors QMAX , the av-
erage Q factor of the 10 most long-lived modes 〈Q〉10, as well
as the average Q factors of the entire distribution 〈Q〉ALL, for
stadia with long axis equal to 10, 20, and 60 μm, respectively.
The dashed green line shows that the average Q factor of the
entire distribution 〈Q〉ALL increases almost linearly with the
linear size of the resonator. In contrast, the highest-Q factors
clearly increase sublinearly (compare to the black dashed
line), and have a scaling behavior closer to a square-root law
(dashed red line). These results agree with theoretical work
that suggests that the effects of scarring decrease as the size
of the resonator increases [48,51] and that the tail of anoma-
lously high-Q factors from scarred modes shrinks as well
[36]. In analogous calculations for the D-cavity comparing the
results for sizes R = 4.2 and 8.4 μm (not shown), the average
Q factor 〈Q〉ALL scales almost linearly with the resonator size
as well. However, the highest-Q modes are not scarred as
strongly as in the case of the stadium, and while their Q
factors also increase sublinearly, there is a smaller difference
between the highest-Q modes and the rest of the distribution.
We thus conclude that the nonuniversal effects of scars from
short periodic orbits become less important for larger cavities,
leading to a similar lasing thresholds for stadium and D-cavity
as observed in the experimental data.

F. Effects of surface roughness

Another effect that can result in more similar lasing thresh-
olds for cavities of different shape is surface roughness. Scat-
tering at the rough boundary can affect the field distributions
and Q factors, in particular, of scarred modes. To include this
effect in our study, we performed additional simulations in
which we randomly modified the smooth boundary of the 2D
geometries for three resonator geometries: the stadium, the
D-cavity, and an elliptical cavity, which has integrable ray
dynamics. We introduced random variations in the direction
normal to the ideal boundary, with a variation over length
scales from 0.3 to 10 μm (see Ref. [52] for the explicit def-
inition of the deformed boundary). The surface roughness is
quantified by the variance of the deviation in normal direction
r from the ideal boundary position r0. In our simulations, the
deviations of the boundary deformation are parametrized by
σ = E [(r−r0 )2]

r0
. Based on our estimate of the surface roughness

visible in SEM images of the experimental devices, we used
σ = 30 nm. The effects of perturbing the resonator bound-
ary in this way are presented in Fig. 9, which shows the
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FIG. 8. Dependence of the Q-factor distributions on the size of the stadium resonator. (a) 2L = 10 μm. The inset shows the electric field
distribution of the highest-Q mode. (b) 2L = 20 μm. The inset shows the normalized standard deviation of the three Q-factor distributions as
a function of cavity size. (c) 2L = 60 μm. The inset shows the spatial distribution of the electric field of the highest-Q mode. For (a), (b) and
(c), the red dashed vertical line marks the Q factor of the long-living ray trajectories. (d) Dependence of Q factors on size L. Indicated are
the highest-Q factor QMAX (black solid line), the average of the 10 highest-Q factors 〈Q〉10 (blue solid line), and the average of all Q factors
〈Q〉ALL (green solid line). The linear extrapolations of Qmax and 〈Q〉all from their values at L = 5 μm are shown as black and green dashed
lines, respectively. The red dashed line indicates the extrapolation of Qmax according to square-root scaling.

Q-factor distributions for the stadium, D-cavity, and ellipse
with surface roughness. We notice that the Q-factor distribu-
tion for the stadium with roughness no longer features high-Q
outliers as we suspected. The Q-factor distributions of the
stadium and D-cavity resonators are much more similar with
surface roughness than for a smooth boundary, especially con-
cerning the high-Q tail of the distributions. Still, the average
Q factor for the stadium is still higher that of the D-cavity.

The field distributions of the high-Q modes are also af-
fected as shown in the insets of Fig. 9, and they deviate
significantly from those for smooth boundaries. Therefore,
the SALT interaction coefficients and thus mode competition
are affected as well by the roughness. Table III summarizes
the number of lasing modes within a factor of 10.0 of the

first lasing threshold and the evolution of the Q factors as
a function of cavity size for stadium, D-cavity, and ellipse.
When including surface roughness, doubling the size leads to
a roughly twofold increase of the number of lasing modes,
i.e., a linear increase with the cavity size. Note that the
simulated ellipse has identical refraction index (n = 3.5) and
surface area (A = 44.6 μm) as the other two resonators, and
the aspect ratio b/a = 2.

Reference [27], in which single-mode lasing for stadium-
shaped semiconductor microlasers was found, also reported
experiments and simulations for elliptical cavities. The el-
lipse has integrable ray dynamics, and the whispering gallery
modes of a dielectric ellipse resonator can be labeled with ra-
dial and azimuthal quantum numbers. The experiments in [27]
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FIG. 9. Q-factor distributions for the (a) stadium, (b) D-cavity, and (c) ellipse resonators with surface roughness. Each distribution contains
1000 resonances centered at λ = 1.0 μm. The random boundary roughness in each of the simulations is drawn from the same distribution, and
the average of the deviation of the boundary deformations in the normal direction is σ = 30 nm. The insets show the spatial patterns of the
modes with the highest-Q factors for each distribution. The scarring effect observed for the highest-Q modes of cavities with smooth boundaries
does not persist for this level of surface roughness. The cavities have identical index (n = 3.5) and identical surface area, corresponding to a
stadium length of 2L = 10 μm.

found multimode lasing for elliptical microlasers in contrast to
the single-mode lasing of the stadium lasers. It is challenging
to model these experiments since an ideal ellipse resonator
has extremely high-Q whispering gallery modes, which would
lead to many orders of magnitude lower thresholds than those
observed experimentally. We attribute this to effects such as
surface roughness, inaccurate shape fabrication, and intrinsic
absorption that reduce the Q factors of actual resonators. We
simulated elliptical microlasers with surface roughness equal
to that used for the wave-chaotic resonators. We found that
the rough ellipse cavities always showed multimode lasing,
with a number of modes comparable to, but smaller than, the
wave-chaotic cavities, as shown in Table III. The highest-Q
factor for the rough ellipse was four times higher than that
for the rough stadium, and the mode showed a more regular
field distribution despite the surface roughness. This indicates
that an integrable cavity shape, like the ellipse or the circle,
has resonance properties which are distinct from the wave-
chaotic cavities, even in the presence of substantial surface
roughness.

TABLE III. Highest-Q factor (QMAX ) and the average of the 10
highest-Q factors (〈Q〉10), as well as the number of lasing modes
(LM) within a factor of 10.0 of the first lasing threshold for the
stadium, D-cavity, and ellipse with surface roughness. The refractive
index is n = 3.5 and the geometrical parameters are chosen such that
the the different geometries in the top half of the table have the same
area, as do the ones in the bottom half of the table.

Resonator Size QMAX 〈Q〉10 LM

Stadium 2L = 10 μm 1833 1524 9
D-cavity 2R = 8.4 μm 1034 969 11
Ellipse 2b = 10.6 μm 7662 5282 6
Stadium 2L = 20 μm 2852 2724 15
D-cavity 2R = 16.8 μm 2083 1895 22
Ellipse 2b = 21.2 μm 16495 13800 14

V. DISCUSSION AND CONCLUSION

We present an experimental and theoretical study concern-
ing the question if wave-chaotic semiconductor microlasers
in cw operation generally exhibit multimode lasing, as was
found for experiments with pulsed pumping in Ref. [22] and
steady-state numerical simulations in Ref. [42], or single-
mode lasing as found in experiments with cw pumping and
theoretical studies in Refs. [26,27,29].

Our experimental results, presented in the first part of this
paper, can be summarized as follows. We find multimode
lasing for both stadium and D-cavity lasers in qualitative
agreement with our earlier results on the D-cavity [22]. Time-
resolved measurements for long pump pulses show fewer
lasing peaks at a given time compared to integration over a
whole pulse, but we do not observe a consistent reduction of
the number of active lasing modes toward a single mode over
the course of longer pulses as was found in Ref. [26]. The
time-resolved measurements showed that the spectra were
stable over timescales very long compared to other timescales
in the system, so we believe our results are representative
of the steady-state lasing properties. The devices studied in
the current experiments have lasing thresholds comparable to
those studied in Ref. [27], thus, it is unlikely that a different
degree of surface roughness is responsible for our observation
of multimode lasing in contrast to single-mode lasing in the
experiments of Refs. [26,27].

The theoretical and simulation results presented have the
following implications in our view. Nonuniversal effects,
such as lasing on scarred modes, become already weak in
wave-chaotic cavities with dimensions well below the size
of the experimental cavities, and cannot explain single-mode
lasing in wave-chaotic microlasers. SALT theory, which takes
into account gain competition and spatial hole burning very
accurately, never predicts single-mode lasing for wave-chaotic
resonators pumped well above threshold. Hence, gain sat-
uration and spatial overlap of modes alone do not explain
the experimental results found in Ref. [27]. Hence, the re-
maining theoretical uncertainties are in the dynamics of the
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gain medium, which is neglected in SALT. It is well known
that for nearly degenerate lasing modes, a frequency locking
effect can occur above threshold due to the population dy-
namics, reducing the number of lasing modes [53]. FDTD
simulations of wave-chaotic lasers by Harayama and co-
workers [29,54] appear to show such merging of modes as
the pump is increased, but these effects are found at un-
physically high relative pumps, and at large values of the
population relaxation rate γ‖. If there is a regime where
single-mode lasing is favored for wave-chaotic lasers, it must
be due to subtle dynamical effects such as these, which go
beyond standard spatial hole burning and gain competition.
We currently lack the theoretical and computational tools to
answer definitively this question and we did not explicitly
consider certain effects that might impact the dynamics, such

as carrier diffusion. Our experimental results indicate that if
there is such a regime, it is not realized in all wave-chaotic
semiconductor lasers, and needs to be better characterized
experimentally.
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