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Emerging applications of metasurfaces in classical and quantum optics are driving the need for precise
polarization control of nearly-degenerate, high quality (Q)-factor modes. However, current approaches to
creating specifically polarized pairs of modes force a trade-off between maintaining high Q factors and
robustness. Here, we solve this challenge by employing pairwise generation, annihilation, and positioning
of polarization singularities, derived from symmetry-guaranteed pairs of symmetry-protected bound states
in the continuum. We experimentally demonstrate this design paradigm in silicon metasurfaces with mode
splittings of ≈20 nm, mode splitting deviations as low as 1 nm, and Q factors up to 200. This approach
opens new avenues for enhancing metasurface performance across a diverse range of applications,
including sensing, modulating, nonlinear mixing, and generating quantum light.
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Controlling the far-field polarization response of a
metasurface is critical for a variety of applications in
classical and quantum optics [1–4]. While polarization
control can be achieved through careful design of out-
coupling rates and phases for two orthogonal directions
(i.e., s- and p-), new applications of metasurfaces are
driving the creation of increasingly sophisticated devices
that require multidimensional control extending beyond
polarization. In particular, one emerging need is the ability
to robustly create and control nearly-degenerate pairs of
high-Q modes while simultaneously shaping the polariza-
tion responses. Achieving such comprehensive control
would create pathways for enhancing metasurfaces in
applications ranging from narrowband, polarization inde-
pendent sensors [5–8] and modulators [9] to entangled
photon-pair sources [10–12] with orthogonality across the
Poincaré sphere, as well as nearly degenerate nonlinear
mixers [13–16].
Fundamentally, achieving predictable multidimensional

control overmetasurface responses stems from the generally
smooth variation of a metasurface’s properties as the system
is altered. As such, singularities, where a system’s properties
undergo a discontinuous change, play an outsized role in
determining metasurface properties, effectively dictating a
system’s response over a broad range of parameter space.
Indeed, metasurface singularities have been used to control
resonance lifetimes [17], non-Hermitian responses [18],
disordered media responses [19], and degeneracies [20].

Moreover, because singularities obey conservation require-
ments (Poincaré–Hopf theorem [21–23]), they provide
protection against perturbations from material and fabrica-
tion imperfections; thus, realizing robust, simultaneous
control over a metasurface’s Q-factor and polarization
amounts to simultaneously controlling the singularities of
each property. As Q factors are necessarily positive
scalars, a Q-factor singularity is a location in parameter
space where Q → ∞, i.e., where the system exhibits a
bound state in the continuum (BIC) [24]. Due to the
smooth variation of Q away from the singularity, a system
can exhibit arbitrarily large Q factors in the vicinity of a
BIC, yielding a design space for creating quasi-BICs with
any specified lifetime. Similarly, a metasurface’s polari-
zation response (at a given wave vector) is specified by the
polarization ellipse, whose major axis determines the
orientation of polarization ellipse. As such, polarization
can exhibit many forms of singularities: BICs, where the
ellipse’s major and minor axes both have zero length
indicating the state does not radiate [24]; C points, where
the ellipse’s major and minor axes have the same, nonzero
length, yielding an undefinable ellipse orientation and
indicating a circularly polarized response [25–27]; and
band degeneracies, where there is no well-defined polari-
zation for either resonance band [20].
Previously, concurrent control over both Q and polariza-

tion singularities enabled the creation of metasurfaces to
generate non-zero orbital angular momentum [28–31], lasing
with near-perfect circular polarization [32], and shaping
narrowband wavefronts [33–37]. However, the design
approaches these previous works use are only applicable to
single resonance bands and therefore only enable control over
spectrally isolated singularities. Prior studies considering
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multiband phenomena overcame the lack of Q-factor singu-
larities near band degeneracies [20,38,39] by relying on fine
tuning accidental degeneracies of BICs [11,40,41] or C
points [42]. Unfortunately, these fine-tuning approaches
yield bands that are unpredictable under perturbations,
resulting in metasurfaces susceptible to fabrication and
material imperfections [43–45], and therefore are incompat-
ible with applications where robust dual-band control is
necessary.
Here, we experimentally demonstrate robust, simulta-

neous control over the polarization and Q-factor singular-
ities of two nearly degenerate metasurface resonances. To
do so, we build a design framework rooted in system
symmetries—using symmetry to guarantee the formation
of degenerate pairs of symmetry-protected BICs. As we
show, through judicious symmetry breaking we can gen-
erate, annihilate, and position polarization singularities
arising from BICs and band degeneracies. Moreover, a
symmetry-based approach enables marked robustness,
highlighted by our experimental demonstration of polari-
zation control through pairwise rotation of singularities
with a mode splitting deviation of 1 nm, representing a
fractional variation less than 1 × 10−3 from the designed
central resonance wavelength without structural fine tun-
ing. Looking forward, as our design method is underpinned
by pairwise control of singularities, it has broad appli-
cability, from enabling narrowband metasurfaces operating
as Poincaré sphere spanning polarizers in scattering con-
figurations, to developing high-Q metasurfaces enhancing
light generation (nonlinear, thermal, and spontaneous)
while shaping far-field polarization properties of emission.

Moreover, since our approach is rooted in group theory, it is
translatable to controlling pairs of singularities in acoustic,
mechanical, and optomechanical systems [46,47].
To demonstrate pairwise polarization singularity manipu-

lation across two resonance bands, we consider an all-
dielectric metasurface comprised of a triangular lattice of
finite-thickness silicon resonators (n ≈ 3.35) surrounded by
air on a fused silica substrate (n ≈ 1.44), and calculate its
resonance band structure, Bloch eigenstates, and corre-
sponding eigenpolarizations (far-field polarization states
of the eigenstates of the metasurface resonances; see
Supplemental Material [48]) using guided-mode expansion
(legume, guidedmode expansion implementation [52]). The
resonators of the symmetry-preserved structure are cylinders
with height 0.2a and radius 0.45a, where a is the lattice
constant. By starting with a triangular array of cylinders, all
of the rotational symmetries of the underlying structure’s
C6v symmetry are preserved [53]. For two of the meta-
surface’s resonance bands [Fig. 1(a)], calculations show
that at the Γ point (normal incidence, i.e., with in-plane
wave vector kk ¼ ð0; 0Þ) the two bands exhibit a parabolic
degeneracy and Q factors > 1010 ≈∞, indicating the
presence of BICs [55]. Together, these features show that
the modes at Γ belong to the E2 irreducible representation of
C6v [56], i.e., a pair of degenerate modes in a triangular
reflection-symmetric lattice that are even with respect to
180° rotational symmetry and therefore forbidden from
radiating to the far field.
As the two modes in Fig. 1(a) are degenerate and have

infinite Q factors at Γ, they necessarily possess polariza-
tion singularities at Γ. The topological charge of these

(a) (b)

(c)

FIG. 1. (a) Symmetry-guaranteed pairs of symmetry-protected BICs can form when all symmetries of the triangular lattice are
preserved. Looking at the eigenpolarization and band structure (normalized frequency units ðωa=2πcÞ) near the Γ point, a topological
singularity exists at the Γ point due to the degenerate BICs, with topological charge ν ¼ −2. (b) When a C3 symmetry breaking
deformation (ζ) is applied to the resonators in the triangular lattice, the degeneracy is lifted resulting in the creation of two Dirac points
away from the Γ point with ν ¼ − 1

2
each, but two symmetry-protected BICs remain at the Γ point with ν ¼ −1. (c) When a C2 symmetry

breaking deformation (δ) is applied, the parabolic degeneracy (now with ν ¼ þ1) is preserved and the symmetry-protected BICs are
converted to quasi-BICs, resulting in the creation of 6 C points per band with ν ¼ − 1

2
each.
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polarization singularities can be determined from the wind-
ing number of the major axis of the polarization ellipse
around the singularity following a closed pathD [24,27,57],

ν ¼ 1

2π

I
D
dkk · ∇kkρðkkÞ: ð1Þ

Here, the angle of the polarization ellipse ρðkkÞ is calculated
by projecting the eigenpolarization ellipse onto the xy plane.
When all symmetries are preserved, the eigenpolarizations
in Fig. 1(a) show that these polarization singularities possess
a topological charge ν ¼ −2 at theΓ point for both upper and
lower bands (see Supplemental Material [48] for separated
eigenpolarization plots). This can be visually verified by
inspecting the winding of the polarization ellipses about a
closed path D that contains the singularities.
While there are many approaches to controlling singu-

larities, group theory provides an intuitive framework for
controlling singularities since the symmetry of the modes is
determined by irreducible representations with physically
meaningful characters. If C6v symmetry is preserved, the
Q-factor and polarization singularities of the pair of meta-
surface resonance bands in Fig. 1(a) must remain colocated,
even in the presence of higher order perturbations so long as
they possess C6 rotational symmetry. However, these two
types of singularities are protected by different underlying
lattice symmetries: theQ-factor singularity is protected at Γ
by C2 (180°) rotational symmetry, while the polarization
singularity due to the band degeneracy is protected at Γ by
C3 (120°) rotational symmetry [47,58]. Thus, as C2 and C3

are independent subgroups of C6v, either rotational sym-
metry can be broken or preservedwithout affecting the other
through changes to the system’s geometry, yielding two
independent mechanisms for controlling the system’s sin-
gularities. In particular, after breaking a protecting sym-
metry, polarization singularities are allowed to undergo
pairwise annihilation, creation, and conversion events in
both bands.While the exact dynamics depend on the specific
symmetry breaking perturbations, the total topological
charge must be conserved (

P
ν) as required by the

Poincaré–Hopf theorem [21–23].
As an example, consider a general alteration to the radius

of the cylindrical resonators as

rðθÞ ¼ r0 þ ζ cosð2m½θ þ φ�Þ þ δ cosð3m½θ þ ψ �Þ: ð2Þ

Here, the radial profile (rðθÞ) depends on the base radius
(r0) and symmetry breaking strengths with ζ determining
the strength of 120° (C3) symmetry breaking and δ dictating
the strength of 180° (C2) symmetry breaking.
When 120° rotation symmetry (C3) is broken with

ζ ¼ 5 × 10−3a, the degenerate BICs become nondegener-
ate BICs with infinite Q factors and nonzero splitting
[Fig. 1(b)]. The symmetry reduction destroys the parabolic
point degeneracy resulting in the creation of two Dirac

point degeneracies each with charge ν ¼ − 1
2
. These points

are created near the Γ point with the radial position
determined by the C3 symmetry breaking strength. As
evidenced by the Q factors and eigenpolarizations, BICs,
and thus polarization singularities, are still present at the Γ
point with a topological charge of ν ¼ −1 for each band. As
required, the total topological charge is conserved withP

ν ¼ −2, which can be visually verified by inspecting the
winding of the polarization ellipses for a path encircling the
BICs and Dirac points in Fig. 1(b).
Similarly, when 180° rotational symmetry (C2) is broken

with δ ¼ 5 × 10−3a, the degenerate BICs become degen-
erate quasi-BICs [Fig. 1(c)] with finite Q factors. The
infinite Q factors at Γ are now finite with Q factors of
6.6 × 104 and 6.8 × 104 for the lower and upper bands,
respectively. This symmetry reduction results not only in
destruction of the BIC but also the formation of six new
C-point polarization singularities, each with topological
charge ν ¼ − 1

2
, where the eigenpolarization is circular;

three left-handed and three right-handed per band. The
parabolic degeneracy is still present, but with a topological
charge ν ¼ þ1, which can be verified by seeing that the
polarization ellipse rotates clockwise along a clockwise
path encircling the degeneracy. As required, the total
topological charge (

P
ν ¼ −2) is conserved.

Beyond creating or annihilating singularities, full control
requires a mechanism for performing an in-plane rotation of
the underlying singularities. Rotating the 120° symmetry
breaking deformation results in a new silicon resonator
profile and angular rotation of only the Dirac points
[Fig. 2(a)]. Correspondingly, rotating the 180° symmetry
breaking deformations yields a new silicon resonator profile
and angular rotation of only the C points [Fig. 2(b)].

Topological Charge Legend
BIC
C-Point

Parabolic Point
Dirac Point

Lower Band (LB) Upper Band (UB)

ky

kx

ky

kxψ

Deformation
on

Deform
Rotatio

φ

(a)

(b)

FIG. 2. (a) By rotating the C3 symmetry breaking deformation
(φ), the angular positions of the Dirac points and the correspond-
ing polarization singularities for both bands can be controlled.
(b) The angular positions of the C points for both bands can be
controlled by rotating the C2 symmetry breaking deformation ψ .
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To experimentally demonstrate independent rotational
control, we fabricated a series of silicon metasurfaces on a
single fused silica substrate with height 200 nm, base radius
400 nm, and periodicity 1000 nm [Fig. 3(a)]. To break C2

and C3 symmetries we used symmetry breaking strengths
of δ ¼ 25 nm and ζ ¼ 30 nm, respectively. Compared to
simulations, we chose larger symmetry breaking strengths
to increase mode splitting and visibility of reflectance
peaks. At the Γ point, the eigenpolarizations for the upper
and lower bands are linear and orthogonal with singularity
positions determining the angle of the eigenpolarization
(see Supplemental Material [48]). By illuminating with a
fixed linear polarization and rotating the symmetry defor-
mation, the orientation of the eigenpolarizations can be
tracked from the mode coupling efficiency through reflec-
tance peak amplitudes with jRpeak − Rbackgroundj ∝ cos2ðαÞ,
where α is the angle between input light polarization and
the eigenpolarization major axis (see Supplemental
Material). We illuminated the metasurfaces with linearly
polarized light polarized parallel to nearest neighbors.
When the C2 and C3 symmetry breaking deformation
angles ψ and φ in Eq. (2) are both 0°, the polarization
of the incident light is parallel to the major axis of the upper
band eigenpolarization and perpendicular to the major axis
of the lower band eigenpolarization. In reflectance mea-
surements, this results in the resonance from the upper band
being visible near 1550 nm while that of the lower band is
barely observed in Fig. 3(c).
As the symmetry breaking deformation angle increases,

the amplitude of upper band resonance decreases [Figs. 3(c)
and 3(d)] while the amplitude of the lower band resonance
increases until a rotation angle of 90°, where the lower band
resonance’s amplitude response is maximized compared to
the minimized upper band resonance. When the C3 sym-
metry breaking deformation angle reaches 90°, the Dirac
points have rotated 90° [Fig. 3(b)]. Beyond 90° deformation
angles, the lower band resonance amplitude decreases while
the amplitude of the upper band resonance increases until
180° where the lower band is minimized and the upper band
is maximized. Physically, this swapping corresponds to the
condition where the two Dirac points have exchanged
positions from the starting scenario (0° deformation angle).
The experimental results are in good agreement with
predictions from eigenpolarization simulations [Fig. 3(d)].
Likewise, when the angle of C2 symmetry breaking

deformation is rotated polarization is controlled—but now
arising from the movement of C points in the upper and
lower bands. Scanning electron micrographs of the fab-
ricated metasurfaces and the corresponding reflectance
measurements for a range of C2 symmetry breaking
deformation angles are presented in Fig. 4(a). When
rotating theC2 symmetry breaking deformation, orthogonal
eigenpolarizations occur when the deformation angle
reaches 30° [Fig. 3(c)]. Increasing the angle to 60° causes
the initial polarization responses to reappear, corresponding

to a complete exchange of C-point positions. This differs
from the 180° rotation required to exchange the position of
Dirac points with C3 symmetry breaking deformation rota-
tions. Again, the experimental results are in agreement with
predictions from eigenpolarization simulations [Fig. 4(d)].
To quantify robustness, we fit the measured reflectively

spectra with two Fano line shapes to obtain Q factors,
mode positions, mode splittings, and deviations (see
Supplemental Material [48]). Both cases demonstrate the
potential for precisely controlling polarization while main-
taining a fixed mode splitting with Q factors reaching over
200. For the C2 symmetry breaking deformation, the
average mode splitting was 22 nm with a root-mean-square
deviation of only 1 nm representing a fractional variation
less than 1 × 10−3 from the central wavelength. In com-
parison, the individual wavelengths of the upper and lower
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FIG. 3. (a) Scanning electron micrographs of fabricated meta-
surfaces and (b) schematic denoting the movement of Dirac
points when the C3 symmetry breaking deformation angle (φ) is
swept from 0° to 180°. (c) Corresponding experimentally mea-
sured reflectance spectra for nondegenerate quasi-BICs. The
incident light is linearly polarized with polarization parallel to
nearest neighbors depicted by the white arrow in (a). (d) Com-
parison between experimentally measured results and predictions
from simulations for integrated reflectance.
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band resonances had a root-mean-square deviation of 5 nm
and 4 nm, respectively. The increased robustness of the
mode splitting, relative to the resonance wavelengths,
demonstrates that the mode splitting is protected by C3

symmetry. In contrast, for devices with C3 symmetry
breaking deformation rotations, the average mode splitting
was 19 nm with a root-mean-square deviation of 5 nm
representing a fractional variation of 3 × 10−3 from the
central wavelength. This increase in deviation can be
attributed to the fact that the C3 symmetry breaking
deformation controls the mode spacing and therefore
perturbations from rotating the deformation and fabrication
imperfections have a larger effect.
In conclusion, we experimentally demonstrated a design

paradigm for polarization control of two high-Q bands
in metasurfaces through the creation, annihilation, and

positioning of polarization singularities arising from sym-
metry-guaranteed pairs of symmetry-protected BICs. By
starting with symmetry-guaranteed pairs of singularities,
robust pairwise manipulation is attained, creating new
pathways for harnessing polarization singularities to sculpt
the far-field properties of metasurfaces for classical and
quantum optics. This includes potential routes for con-
trolled collisions between C points and Dirac points.
Given that our design paradigm is rooted in group theory,
its applicability expands beyond photonics. With sym-
metry-guaranteed pairs of symmetry-protected BICs
occurring in mechanical and acoustic systems, the general-
ity of our method may allow new means for controlling
polarization singularities in acoustic and optomechanical
systems [46,47].
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