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Dynamic gain and frequency comb
formation in exceptional-point lasers

Xingwei Gao 1 , Hao He 1, Scott Sobolewski1, Alexander Cerjan 2 &
Chia Wei Hsu1

Exceptional points (EPs)—singularities in the parameter space of non-
Hermitian systems where two nearby eigenmodes coalesce—feature unique
properties with applications such as sensitivity enhancement and chiral
emission. Existing realizations of EP lasers operate with static populations in
the gain medium. By analyzing the full-wave Maxwell–Bloch equations, here
we show that in a laser operating sufficiently close to an EP, the nonlinear gain
will spontaneously induce a multi-spectral multi-modal instability above a
pump threshold, which initiates an oscillating population inversion and gen-
erates a frequency comb. The efficiency of comb generation is enhanced by
both the spectral degeneracy and the spatial coalescence ofmodes near an EP.
Such an “EP comb” has a widely tunable repetition rate, self-starts without
external modulators or a continuous-wave pump, and can be realized with an
ultra-compact footprint. We develop an exact solution of the Maxwell–Bloch
equations with an oscillating inversion, describing all spatiotemporal proper-
ties of the EP comb as a limit cycle. We numerically illustrate this phenomenon
in a 5-μm-long gain-loss coupled AlGaAs cavity and adjust the EP comb repe-
tition rate from 20 to 27 GHz. This work provides a rigorous spatiotemporal
description of the rich laser behaviors that arise from the interplay between
the non-Hermiticity, nonlinearity, and dynamics of a gain medium.

An exceptional point (EP) is a non-Hermitian degeneracy where not
only do two eigenvalues coincide, but the spatial profiles of the two
modes also become identical1–5. Realizing such non-Hermitian phe-
nomena at steady-state necessitates gain and loss, makingmicrocavity
lasers a fertile ground to explore EPs. The mode coalescence and
corresponding topology of the eigenvalue landscape bestow EP lasers
with unique properties such as reversed pump dependence6, loss-
induced lasing7, single-mode operation8,9, chiral emission10–12, sensi-
tivity enhancement13–18, spectral phase transitions19, and topological
state transfer20. In semiconductor microcavity lasers, the frequency
separation between lasing modes is typically large enough that the
cross beats between modes oscillate so fast that they average away
before the gain medium can respond, leading to a static population
inversion in the gain medium21. Previous realizations of EP lasers

operated in this regime, yielding stable single-mode or few-mode
behavior (Fig. 1a); these static-inversion lasers can be modeled by the
“steady-state ab initio laser theory” (SALT)22–26.

To enhance the performance of EP-related phenomena, such as
the sensitivity of EP sensors13–18, it is desirable to operate as close to an
EP as possible. However, sufficiently close to an EP, the vanishingly
small eigenvalue difference (namely, frequency difference)means that
any two lasingmodes of amultimode system necessarily produce beat
notes slow enough to render the population inversion nonstationary.
In general, since the population inversion determines the laser’s gain,
any nonstationary inversion produced by beat notes acts as a periodic
modulation over the effective complex refractive index of the laser
system. If gain’s periodic modulation frequency matches the cavity’s
free spectral range (FSR) such that its high-quality resonances can be
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excited, a frequency comb will form whose line spacing relies on the
optical size of the cavities, examples of which include mode-locked
laser combs27, Kerr combs28,29, electro-optic combs30, and quantum
cascade laser combs31–33. Thus, a laser operating close to an EP has two
competing frequency scales, one set by the eigenvalue splitting, and
the other set by the cavity FSR; the former suggests that the system
should become a comb due to population inversion dynamics, while
the latter suggests that comb lines forming away from the cavity
resonances will experience too much radiative loss to persist. Unfor-
tunately, existing theories34–44 cannot describe both the spatial com-
plexity and the temporal dynamics of the laser in this nonstationary-
inversion regime.

In this work, we develop a rigorous analysis of the full-wave
Maxwell–Bloch equations and show that sufficiently close to an EP, a
laser necessarily develops into a frequency combwhen pumped above
a comb threshold Dth

c . In this operating regime, the nonlinear gain
induces a multi-spectral multi-modal perturbation that destabilizes
single-mode operation and initiates temporal oscillations in the
population inversion (Fig. 1b). The dynamic inversion then nonlinearly
couples different frequencies to produce a frequency comb above Dth

c

(Fig. 1c). As such, our framework demonstrates that a combmust form
even though the frequency of modulation driven by the dynamic
inversion is typically orders of magnitude smaller than the FSR of the
laser cavity. Distinct from conventional combs, such an “EP comb” has
a repetition rate independent of FSR, which enables a widely tunable
repetition rate and a compact cavity size. The EP comb oscillation self-
starts, forming spontaneously above a pump threshold without an
external modulator or an external continuous-wave laser. Moreover,
we find the efficiency of comb teeth generation, characterized by a ζ
factor that we introduce, to be enhanced by the spectral degeneracy
and the spatial coalescence of the mode profile, conditions that are
simultaneouslymet by operating near an EP. Finally, as an example, we
provide full-wave solutions of an EP comb in an AlGaAs gain-loss
coupled cavity that ismerely 5-μm long, demonstrating a continuously
tunable repetition rate from 20 to 27GHz, about 400 times smaller
than the free spectral range of this small cavity. Overall, the EP comb
phenomena we predict provide a rich and unexpected intersection
between non-Hermitian photonics, laser physics, nonlinear dynamics,
and frequency combs.

Results
Dynamic inversion and comb formation near an
exceptional point
To rigorously describe the wave physics and the spatiotemporal
complexity of an EP laser, we adopt the Maxwell–Bloch (MB)
equations45,46
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The electrical field E(r, t) is described classically with Max-
well’s equations. The gain medium is described quantum
mechanically as an ensemble of two-level atoms, leading to a
population inversion D(r, t) and inducing a polarization density
P(r, t) that couple nonlinearly with E(r, t) through dipole inter-
actions (Supplementary Sec. 1). The D, E, and P here are dimen-
sionless as they have been normalized by R2/(ε0ℏγ⊥), 2R=ð_

ffiffiffiffiffiffiffiffiffiffi
γ?γk

p Þ,
and 2R=ðε0_

ffiffiffiffiffiffiffiffiffiffi
γ?γk

p Þ, respectively, with R being the amplitude of
the atomic dipole moment, ε0 the vacuum permittivity, ℏ the
Planck constant, and γ⊥ the dephasing rate of the gain-induced
polarization (i.e., the bandwidth of the gain). Here, Dp(r) is the
normalized net pumping strength and profile, ωba is the fre-
quency gap between the two atomic levels, θ is the unit vector of
the atomic dipole moment with θ ⋅ θ* = 1, εc(r) is the relative
permittivity profile of the cold cavity, σ(r) is a conductivity profile
that produces linear absorption, and c is the vacuum speed of
light. E and P satisfy an outgoing boundary condition outside the
cavity.

When the pumping strength reaches the first lasing thresholdDth
1 ,

the gain overcomes the radiation loss and absorption loss, and a single-
mode lasing state Eðr,tÞ= E0ðrÞe�iω0t emerges at a real-valued fre-
quency ω0. Substituting this single-mode solution into the MB
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Fig. 1 | Frequency comb formation in an exceptional-point (EP) laser. a In an
ordinary microcavity laser away from an EP, a secondmode turns on when another
resonance of the cavity receives enough gain to overcome its loss. Given the large
frequency difference ωd, the beating between the two modes is too fast to induce
significant dynamics in the population inversion D. b An EP boosts the dynamic
inversion factor ζ ≈ ∣E−1∣2/∣E1∣2 of Eq. (7), creating a multi-spectral multi-modal

perturbation (dashed lines) that induces a dynamic gain oscillating at the beat
frequency ωd. c At pumping strengths above the comb threshold Dth

c , the multi-
spectral perturbation grows into sustained oscillations (solid lines), which induce
additional gain oscillations and cascade down to generate a comb at frequencies
ωm =ω0 +mωd. The large-time behavior is described self-consistently by periodic-
inversion ab initio laser theory (PALT) of Eqs. (11–12).
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equations (Supplementary Sec. 2), we get

Ô ω0

� �
E0ðrÞ � �∇×∇× +

ω2
0

c2
εeffðr,ω0Þ

� �
E0ðrÞ=0: ð4Þ

Here, εeff(r, ω) = εc(r) + iσ(r)/(ωε0) + Γ(ω)D0(r)θ*θ ⋅ is an effec-
tive intensity-dependent and frequency-dependent permittivity
profile of the active cavity, and Γ(ω) ≡ γ⊥/(ω − ωba + iγ⊥). The gain
D(r, t) =D0(r) =Dp(r)/[1 + ∣Γ(ω0)E0(r) ⋅ θ∣2] is nonlinearly saturated
by the local intensity, referred to as spatial hole burning. In this
single-mode regime, Eq. (4) is an exact solution of the MB equa-
tions, the gain is static, and its relaxation rate γ∥ plays no role at
steady state.

One may freeze the nonlinearity by considering a linear operator
Ô ωð Þ in Eq. (4) that uses a fixed saturated gain D0(r) =Dp(r)/[1 + ∣Γ(ω0)
E0(r) ⋅ θ∣2] for a fixed lasing intensity profile ∣E0(r)∣2. This linear Ô ωð Þ
then admits eigenmodes fψnðrÞgn with complex-valued eigen fre-
quencies f~ωngn, satisfying Ôð~ωnÞψn =0 with an outgoing boundary
condition.We refer to themas the active-cavity resonances (also called
quasinormal modes47). We also define operator Ô ωð Þ below the first
lasing threshold Dth

1 simply using the linear unsaturated gain
D0(r) =Dp(r). When we increase the pumping strength to Dth

1 , the
eigenvalue ~ω0 =ω0 reaches the real-frequency axis, and that resonance
becomes the first lasing mode E0(r) ∝ ψ0(r).

In the following, we define an EP as where two eigenvalues
f~ω0,~ω1g of the linear operator Ô ωð Þ coalesce, at which point the cor-
responding mode profiles {ψ0, ψ1} must also become the same given
the non-Hermitian nature of Ô ωð Þ. An EP may exist at pumping
strengths below the first lasing threshold Dth

1 ; such a below-threshold
EP can indirectly affect laser properties6,7,48 but cannot be directly
accessed since it does not correspond to a steady-state solution. In
this paper, we consider a laser close to an accessible EP at pumping
strengths near or above Dth

1 .
The SALT formalism assumes the population inversion to be sta-

tic, D(r, t) =D0(r)22–25. Under SALT, the resonances {ψn} are the modes
that turn on and lase when they receive enough gain. For a second
mode ψ1 to turn on, it must have a spatial profile sufficiently different
from the lasingmode E0∝ψ0 that it can amplify using the gain outside
the spatial holes (i.e., away from the peaks of ∣ψ0(r)∣2). Near an EP, ψ1

necessarily has a similar spatial profile as ψ0 and so cannot turn on.
Therefore, SALTpredicts an EP laser to stay single-mode.However, this
single-mode prediction is based on the static-inversion assumption,
which is questionable near an EP since the slow beating between the
two very close-by frequencies may induce dynamics in the inversion
D(r, t). To find out what actually happens to a laser close to an EP, one
must go beyond SALT and account for the inversion dynamics and its
effects.

To do so, we start with a monochromatic perturbation E1ðrÞe�iω1t

(dashed line in Fig. 1b) to single-mode operation, so the total field is
Eðr, tÞ=E0ðrÞe�iω0t + E1ðrÞe�iω1t . The frequency difference ωd =ω1 −ω0

can be positive or negative. With the inversion almost static, it follows
from Eq. (2) that Pðr, tÞ=P0ðrÞe�iω0t +P1ðrÞe�iω1t with Pm = ΓmD0Emθ*

form =0, 1, where Γm = Γ(ωm) and Em ≡ Em ⋅ θ. We then see from Eq. (1)
that the inversion is no longer purely stationary; as illustrated in Fig. 1b,
we now have Dðr, tÞ=D�1ðrÞeiωdt +D0ðrÞ+D1ðrÞe�iωdt with a dynamic
component induced by the perturbation,

D�1ðrÞ=D*
1ðrÞ=

ðΓ0 � Γ*1Þγk
2ðiγk � ωdÞ

E0ðrÞE*
1ðrÞD0ðrÞ: ð5Þ

This oscillating gain D± 1ðrÞe∓iωdt arises from cross beating in the
nonlinear term E* ⋅ P of Eq. (1), so it is enhanced where E0(r) and E1(r)
spatially overlap. Substituting D(r, t) into Eq. (2) yields a polarization
P−1 = Γ−1(D−1E0 +D0E−1)θ* at new frequency ω−1 =ω0 −ωd, which acts

like a current source to produce a new field E−1 via Eq. (3),

�∇×∇× +
ω2

�1

c2
εeff ðr,ω�1Þ

� �
E�1 = � ω2
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c2
Γ�1D�1E0θ

*
: ð6Þ

This additional frequency component E�1ðrÞe�iω�1t , generated in a
four-wave-mixing49 fashion by the nonlinear gain (Fig. 1b), differentiates
an EP laser from a conventional laser and marks the onset of dynamic
inversion andcomb formation.Toquantify the strengthof this frequency
generation, we solve Eq. (6) to obtain (Supplementary Sec. 3)
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II

� ζ , ð7Þ

whichwe denote as the dynamic inversion factor ζ. Here, 〈⋯ 〉 = ∫(⋯ )
dr3 denotes integration over space. We see ζ is proportional to the
lasing intensity squared, ∣E0∣4, but independent of the perturbation
strength ∣E1∣, so ζ ≠ 0 even for an infinitesimal perturbation.

The dynamic inversion factor ζ has two ingredients, Factor I on the
spectral dependence, and Factor II on the spatial dependence and ∣E0∣4

laser intensity dependence.When the perturbationE1e
�iω1t overlapswell

with the long-lived resonances fψne
�i~ωntg, the response can sustain

longer. So, the frequency differenceωd =ω1−ω0 here correlateswith the
eigenvaluedifference ~ω1 � ~ω0,which isminimizednear anEP, enhancing
Factor I through its ω�4

d scaling. The resonances are biorthogonal with
〈εcψ0 ⋅ψ1〉≈0. As the two resonances coalesce near an EP,E0∝ψ0≈ψ1, so
〈εcE0 ⋅ E0〉≈0,which enhances Factor II of ζ in the sameway as howan EP
enhances thePetermann factorK≡ ∣〈εc∣E0∣2〉/〈εcE0 ⋅E0〉∣250–57. Suchamode
coalescence promotes coupling through the stronger field overlap.

In Supplementary Sec. 4, we perform a stability analysis58,59 to
determine thedecay (orgrowth) rateof themulti-frequencyperturbation
E1ðrÞe�iω1t +E�1ðrÞe�iω�1t . As the pumping strength increases, the decay
rate crosses over to become a growth rate, and the crossover marks the
next threshold Dth

2 . This is where the infinitesimal multi-frequency per-
turbation materializes into sustained oscillations at ω±1. As the pump
increases further, the new frequencies induce higher harmonic oscilla-
tions in the population inversion, which generates more lasing fre-
quencies. The process cascades down to produce a frequency comb
(Fig. 1c). Therefore,near anEPwhere the ζ factor is substantial,Dth

2 =Dth
c is

also the thresholdwhere the frequency comb (indicated by the subscript
c) emerges, corresponding to a supercritical Hopf bifurcation60.

We note that while the ζ factor is resonantly enhanced, the beat
frequencyωd and the coupled perturbation E±1(r) are determined by the
linear stability eigenproblem (Supplementary Sec. 4), not by Eq. (4) as in
SALT. Therefore, E±1(r) is generally not an active-cavity resonanceψn but
a superposition of multiple resonances, and the comb spacing ωd is
correlated with but not identical to the resonance spacing j~ω1 � ~ω0j.

Exact dynamic solution: PALT
The preceding analysis predicts comb formation near an EP and its
threshold. To additionally predict the laser behavior aboveDth

c such as
the the evolution of the comb-line intensities, repetition rate, spatial
profiles, and temporal dynamics, one must address the coupling
between all frequency components self-consistently. Since the cascade
process couples frequencies separated by ωd =ω1 −ω0, we postulate
the following spatiotemporal dependence at large time61,62

Eðr, tÞ= e�iω0t
X+1

m=�1
EmðrÞe�imωdt , ð8Þ

Pðr, tÞ= e�iω0t
X+1

m=�1
θ*PmðrÞe�imωdt , ð9Þ
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Dðr, tÞ=
X+1

m=�1
DmðrÞe�imωdt , ð10Þ

with ω0, ωd, and D(r, t) being real numbers. This ansatz describes a limit
cycle60, which is periodic in time and therefore represented rigorously by
a Fourier series. It also describes single-mode and two-modeoperation as
special cases but excludes operatingwithmore than two cavitymodes or
a chaotic dynamics. The temporal periodicity is τ=2π/ωd.

We show in Sec. METHODS that the ansatz of Eqs. (8–10) forms an
exact solution of the full-wave MB equations, Eqs. (1–3), with no
approximation. Eliminating the gain-induced polarization yields a
coupled nonlinear equation for {Em}

�∇×∇×Em +
ω2

m

c2
εc +

iσ
ωmε0

� 	
Em = � ω2

m

c2
Γm

X+1
n=�1

Dm�nðEn � θÞθ*,

ð11Þ
and {Dm}

�D=Dp
��I � 0:5��Γk

��E
y��Γ+

��E � ��E��Γ
y
�
��E
y
 �h i�1

�δ, ð12Þ

withωm =ω0 +mωd. Different frequency components Em are coherently
coupled through a dynamic inversion Dm−n oscillating at the frequency
difference. Here, �D and �δ are column vectors with elements ð�DÞm =Dm

and ð�δÞm = δm, where δm is theKronecker deltawith δ0 = 1 andδm≠0 =0;
��I

is the identity matrix; ��E is a full matrix with elements ð��EÞmn =Em�n � θ; †

denotes matrix conjugate transpose; ��Γk and ��Γ± are diagonal matrices
with ð��ΓkÞmn = δm�nγk=ðmωd + iγkÞ and ð��Γ± Þmn = δm�nΓ±m, where
Γm = Γ(ωm) = γ⊥/(ωm −ωba + iγ⊥) was defined earlier.

Solving Eqs. (11, 12) for {Em(r)}, {Dm(r)}, ω0, and ωd yields all
properties of the laser comb, including the frequency spectrum,
temporal dynamics, spatial profiles, and input-output curves. To
match the number of equations and the number of unknowns, we fix
two gauge variables by recognizing that when E(r, t) is a solution,

eiϕE(r, t − t0) with any real-valued ϕ and t0 is also a solution. We name
this formalism “periodic-inversion ab initio laser theory” (PALT), which
overcomes the stationary-inversion limitation of SALT.

Note there is no sharp transition between an ordinary two-mode
laser and an EP comb. An ordinary laser operating in the two-mode
regime away from degeneracies is a trivial limit cycle with two domi-
nant frequency components and is also rigorously described by Eqs.
(8–12). Such a laser features a small ζ factor, so the second threshold
Dth
2 from the stability analysis reduces to the SALT threshold (Sup-

plementary Sec. 4), and the intensities of the additional frequency
components (m ≠0, 1) are small enough to be neglected. When ζ is
raised,Dth

2 smoothlymoves, and the additional frequency components
above Dth

2 smoothly increase.
Up to now,we have consideredMBequationswith an ensemble of

two-level atoms. In Supplementary Sec. 5, we generalize the MB
equations to account for the band structure in semiconductor gain
media and correspondingly generalize the PALT formalism, which
does not change the conclusion on comb formation near an EP.

EP comb example
We now use explicit full-wave examples for illustration. We adopt a
parity-time-symmetric-like configuration3,4,63, where a gain cavity is
coupled to a passive cavity with material loss (Fig. 2a). Supplementary
Sec. 6 lists the system parameters. The coupling and the gain-loss
contrast are ingredients for an EP1–5. Distributed Bragg reflectors
(DBRs) are used to enclose the two cavities and to separate them. The
gain cavity consists of AlGaAs (refractive index

ffiffiffiffiffi
εc

p
=3:464, gain center

~ωba =2πc=ωba =820 nm, gain width γ⊥ = 1013 s−1, and relaxation rate
γ∥ = 109 s−1)65. The PALT formalismapplies to anypumpingprofileDp(r);
to improve the accuracy of the slow finite-difference time-domain
(FDTD) simulations that we perform for validation, here we adopt a
smooth profile DpðxÞ=0:5Dmax½1� cosð2πx=LÞ�. The other cavity con-
sists of passive GaAs (

ffiffiffiffiffi
εc

p
=3:67)64 with a material absorption char-

acterized by a conductivity σ. The system is homogeneous in the
transverse directions (y and z), so it reduces to a 1D problem
with EmðrÞ= EmðxÞẑ.
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1 where ~ω0
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In Fig. 2b, c, we show the two eigen frequencies f~ω0,~ω1g of the
linear operator Ô ωð Þ of Eq. (4) as a function of the pumping strength
Dmax and the length of the passive cavity, L2 = 1340 nm+Δ. To illustrate
the presence of an EP, in this figure (and this figure only) we adopt
a linear gain D0(x) = Dp(x) with no saturation, yielding two Riemann
sheets that meet at an EP at Dmax =0:0126,Δ=0:01 nm ,
~ω0 = ~ω1 = ~ωEP = 2π ×365:43 THz � i0:0356ps�1 (green circle).

Next, wefix the length of the passive cavity at L2 = 1340 nm (Δ = 0),
for which the pump dependence of the two eigenvalues is shown by
the red (n = 0) and blue (n = 1) curves in Fig. 2b–d. At pumping strength
Dmax =D

th
1 = 0:0124 (red and blue filled circles in Fig. 2d), ~ω0 reaches

the real-frequency axis, and E0(x) ∝ ψ0(x) turns on as the first lasing
mode; the Petermann factor there is K0 � jhεcjψ0j2i=hεcψ2

0ij2 = 28.
Above the first threshold (Dth

1 <Dmax<D
th
2 ), the red and blue

dashed lines in Fig. 2b–d show the would-be eigenvalue trajectories
with a hypothetical linear gain, in which case the system enters a PT-
broken phase where one mode is localized in the pumped cavity, and
the other mode is localized in the lossy cavity. Gain saturation, how-
ever, clamps the saturated gain at the same level as the overall loss,
whichfixes the twononlinearity-frozen eigenvalues f~ω0,~ω1g nearwhere
they are at Dth

1 (red and blue filled circles in Fig. 2d), and this single-
mode laser stays close to a nonlinear EP without entering the PT-
broken phase.

As the pumping strength reaches above Dmax >D
th
2 =Dth

c =0:064,
the population inversion starts to oscillate (Fig. 3e), and a frequency
comb emerges (Fig. 3g). Given the proximity to an EP, the repetition rate
∣ωd∣ ≈1.35 × 1011 rad/s at Dth

c is around 400 times smaller than the FSR of
theoverall cavity, and thedynamic inversion factor ζ≈0.26 is sizeable. For
a complete characterization, we show in Fig. 4a the evolution of the
intensity at different frequencies as a function of the pumping strength.
To keep the frequency difference ∣ωd∣ small, we raise the absorption level
σwhenDmax >D

th
c (Fig. 4b, c). The two center comb lines {ω0,ω1} lie close

to the twonear-degenerate active-cavity resonances fromSALT in Eq. (4),
fReð~ω0Þ, Reð~ω1Þg; the remaining comb lines are generated by the non-
linear gain through four-wave mixing and are not lined up with any
additional cavity modes (Supplementary Fig. 3). The spatial profiles at
different frequencies are almost identical (Fig. 3c); they remain com-
parable to the profiles near the EP in the single-mode regime
Dth
1 <Dmax<D

th
2 where the two modes almost coalesce, without entering

the PT-broken phase. Supplementary Sec. 6 shows the intensity and gain
profiles at all frequencies and their relative phases.

It is commonly assumed21,25,26,58,59 that the stationary-inversion
approximation (SIA) of SALT is valid when ∣ωd∣ > γ∥, namely when the
beat notes oscillate faster than the gain relaxation rate. However,
such a reasoning does not account for the EP-enhanced frequency
generation, as captured by the dynamic inversion factor ζ in Eq. (7).
In the present example, ∣ωd∣ ≈1.35 × 1011 rad/s is two orders of mag-
nitude greater than γ∥ = 109 s−1, but SALT (blue circle in Fig. 3g and red
dashed line in Fig. 4a) already fails above the comb threshold. As
described in Sec. Dynamic inversion and comb formation near an
exceptional point and shown in Fig. 2d, SALT predicts the laser to
stay single-mode because ψ1(x) has almost the same spatial profile as
the lasing mode E0(x) ∝ ψ0(x) near an EP, so it experiences the same
gain clamping as E0(x) and cannot turn on; this would indeed be the
laser behavior when the system is near an EP but not close enough. In
the present example, given the very close proximity to an EP and the
resulting large dynamic inversion factor ζ ≈0.26, what actually turns
on at the comb threshold Dth

2 =Dth
c is not an isolated resonance ψ1 of

the operator Ô ωð Þ in Eq. (4) but the multi-spectral multi-modal per-
turbation E1ðxÞe�iω1t + E�1ðxÞe�iω�1t described in Sec. Dynamic inver-
sion and comb formation near an exceptional point, which is a
superposition ofmultiple resonances and can amplify by additionally
utilizing the dynamic gain D± 1ðxÞe∓iωdt of Eq. (5).

As a comparison to the near-EP laser above, we also consider an
ordinary single-cavity laser (Fig. 3b) sandwiched between two DBR

partial mirrors, operating in the two-mode regime. The active cavity has
the same AlGaAs gain. At pumping strength Dmax >D

th
2 = 0:033, two

modes that differ by one longitudinal order lase (Fig. 3d) and produce a
sinusoidal beating pattern (Fig. 3f). Here, the population inversion is
static (Fig. 3f), and only two peaks appear in the spectrum (Fig. 3h).
There is no EP nearby in the parameter space. The frequency separation
jωdj � πc=

ffiffiffiffiffi
εc

p
L � 5:4× 1013 rad/s equals the free spectral range (FSR)of

the cavity and is over four orders of magnitude greater than γ∥, leading
to a negligible dynamic inversion factor ζ≈ 3 × 10−13. The Petermann
factor is K= 1.0 here; the gain only balances the radiation loss and does
not introducemode non-orthogonality. For such a two-mode laser away
from degeneracies, PALT reduces to SALT (blue circles in Fig. 3h).

EPs feature a boosted sensitivity13–18, which also amplifies the
numerical error, requiring an unusually high precision when solving
Eqs. (11–12). We find a finite-difference discretization25 and the
threshold constant-flux basis24 to both require an impractically large
basis to reach a satisfactory accuracy near an EP. To improve the
numerical efficiency, here we develop a volume-integral formalism
that employs accurate semi-analytic Green’s function of the passive
system to solve Eqs. (11, 12) (Supplementary Sec. 7).

To validate our prediction and to verify the stability of the single-
mode and the comb solutions, we additionally carry out direct inte-
gration of the MB equations, Eqs. (1–3), using FDTD, where we evolve
the system until all transient behaviors settle away (Supplementary
Sec. 8). The time-consuming FDTD simulations agree quantitatively
with all of the PALT predictions (Figs. 3–4). Figure 4d shows the field
evolution in FDTDwhen the pump is raised across the comb threshold.

Since the EP comb repetition rate fd = ∣ωd∣/(2π) is not tied to the
cavity FSR, we can adjust it freely, for example, by tuning the material
absorption as shown in Fig. 5. This is not possible with mode-locked
combs, Kerr combs, and quantum cascade laser combs.

In the preceding example, we bring the laser close to an EP. Sup-
plementary Sec. 9 shows that the behavior is the same when we tune
the systemparameters with a higher precision such that the systemhas
an almost exact EP above the first threshold, DEP>D

th
1 . With increasing

pump (while fixing the other system parameters), such a laser reaches
the comb threshold Dth

c and develops into a stable EP comb soon after
Dth
1 . The exact-EP single-mode lasing state is unreachable as it lies at a

higher pump (namely, DEP >D
th
c ≳Dth

1 ) and is unstable.

Discussion
In this work, we answer the question of what happens to a laser close to
an EP. Based on the full-wave MB equations, we show that the spectral
degeneracy and the spatial coalescence of modes near an EP work with
the nonlinearity of the gain medium to induce oscillations in the popu-
lation inversion, resulting in an “EP comb.” The EP comb features a
continuously tunable repetition rate, an ultra-compact cavity size, and a
self-starting operation with no need for an external modulator or
continuous-wave laser. The PALT formalism fully describes both the
spatial complexity and the temporal dynamics of such a limit-cycle laser
state, overcoming the stationary-inversion limitation of SALT. This EP
comb phenomenon uniquely bridges the subjects of non-Hermitian
photonics, laser physics, nonlinear dynamics, and frequency combs.

As EP sensors are more sensitive closer to an EP13–18, it may be
desirable to operate such a sensor as close to an EP as possible. This
work shows that when an EP laser is brought sufficiently close to an EP,
it necessarily develops into a comb above a pump threshold. In such a
comb regime, the optimal sensing scheme and the parametric
dependence are nontrivial and can be the subject of a future study.

Existing realizations of EP lasers had mode spacing above
100GHz; given the ω�4

d scaling of the dynamic inversion factor ζ in Eq.
(7), the ζ’s there were too small to induce the multi-spectral multi-
modal instability responsible for comb formation, so those lasers
exhibited static single-mode behavior. Further reduction of the mode
spacing requires finer tuning but is possible. In fact, the self-pulsation
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observed in an InAs-quantum-dot Fano laser66 may have been an EP
comb since that system has the features of an EP comb (self-starting
comb formation in a compact microcavity) and all the EP ingredients:
twomodes with similar frequencies (one from a line-defect waveguide
and one from a nanocavity), near-field coupling between the two
modes, and differential gain (as only the waveguide is pumped).

The repetition rate ∣ωd∣ of the EP comb is determined by the sta-
bility eigenvalue problem (Supplementary Sec. 4) at the threshold Dth

c

and by solving the nonlinear Eqs. (11, 12) self-consistently above Dth
c .

While it is hard to extract insights from these complex equations,
empirically we found the distance between the two linear SALT
eigenvalues of Eq. (4) to provide a crude approximation,
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Fig. 3 | Laser behavior above the second threshold Dth
2 near and away from an

EP. a The EP laser in Fig. 2a with Δ =0, Dmax =0:2, σ/ε0 = 8.1 ps−1. b An ordinary
AlGaAs laser cavity with DBR partial mirrors. c, d Spatial profiles E0 (red) and E1
(blue) at ω0 and ω1, from the full-wave PALT solution. The two profiles are ortho-
gonal in the ordinary laser but almost identical in the EP laser. e, f Dynamics of the

population inversion D(x0, t) and electrical field E(x0, t) at the location x0 shown in
(a, b). 〈D〉t denotes the inversion averaged over time. g, h The intensity spectrum,
comparing the PALT solution to the existing “steady-state ab initio laser theory”
(SALT) and to FDTD simulations of the Maxwell–Bloch equations.
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jωdj � j~ω1 � ~ω0j, near Dth
c . Close to an EP, the two linear eigenvalues

are sensitive to all parameters of the system, so ωd can be tuned by
changing the absorption, coupling strength, refractive index, etc. The
repetition rate can also be reduced by considering larger cavities. The
minimal repetition rate is limited by the laser linewidth, which can be
reduced with standard methods.

The limit of the linewidth itself would be an interesting subject for
future investigations. The divergent Petermann factor is known to
broaden the linewidth50,51,56,57,67. With an EP comb, we expect even
richer noise properties since the dynamic population inversion can
modify the spontaneous emission beyond noise models that assume a
linear gain54,68 or a stationary inversion42,51,57,69,70. Additionally, the
relation between noise and atomic populations is commonly derived

at a local thermal equilibrium51,69, but such an equilibrium is no longer
reached when the inversion fluctuates faster than the spontaneous
emission rate.

An EP comb provides a doorway to other nonlinear dynamics
phenomena such as bistability, period doubling, and chaos. Future
work can study the stability of the EP comb, its bifurcation prop-
erties, and the transition to other dynamic regimes. The comb
spectrum may be further analyzed and optimized. The PALT
formalism can also describe lasers near Hermitian degeneracies
due to symmetry, going beyond perturbation theory26 and stability
analysis58,59. We expect even richer behaviors near higher-order
EPs and in spatially complex systems such as random lasers and
chaotic-cavity lasers.

Methods
Derivation of PALT
We show that the PALT ansatz in Eqs. (8–10) forms an exact solution of
the MB equations. In doing so, we also derive Eqs. (11, 12).

We substitute Eqs. (8–10) into the MB equations, Eqs. (1–3), and
match terms with the same time dependence. Solving Eq. (1), we get

Dm =Dpδm +
1
2

γk
mωd + iγk

X+1
n=�1

E*
�m+n � θ*Pn � Em�n � θP*

�n


 �
, ð13Þ

where δm is the Kronecker delta with δ0 = 1 and δm≠0 = 0. From Eq. (2),
we get

Pm = Γm
X+1

n =�1
DnEm�n � θ, ð14Þ
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where Γm = Γ(ωm) = γ⊥/(ωm −ωba + iγ⊥) andωm =mωd +ω0. FromEq. (3),
we get

�∇×∇×Em +
ω2

m

c2
εc +

iσ
ωmε0

� 	
Em = � ω2

m

c2
Pmθ̂

*
: ð15Þ

This confirms that all of the MB equations, Eqs. (1–3), are satisfied
with no approximation. Substituting Eq. (14) into Eq. (15), we get Eq.
(11), where we have applied the commutativity of convolution,

X+1
n=�1

DnEm�n � θ =
X+1

n=�1
Dm�nEn � θ: ð16Þ

To eliminate the gain-induced polarization, wefirst recognize that
since D(r, t) is real-valued, its Fourier components have to be sym-
metric, D*

n =D�n. With this fact, we take the complex conjugate of Eq.
(14) and then replace the dummy variable n by − n,

P*
�m = Γ*�m

X+1
n=�1

D*
nE

*
�m�n � θ

= Γ*�m

X+1
n=�1

D�nE
*
�m�n � θ

= Γ*�m

X+1
n=�1

DnE
*
�m+n � θ:

ð17Þ

Eqs. (13, 14, 17) can be summarized in matrix form as

�D=Dp
�δ +

1
2
��Γkð��E

y�P � ��E�P
*
�Þ, ð18Þ

�P = ��Γ+
��E �D, ð19Þ

�P
*
� = ��Γ

y
�
��E
y �D, ð20Þ

where † denotes matrix conjugate transpose, with
• Column vectors: ð�PÞm =Pm, ð�P

*
�Þm =P*

�m, ð�DÞm =Dm, and ð�δÞm = δm.
• Matrices: ð��EÞmn =Em�n � θ̂, ð��ΓkÞmn = δm�nγk=ðmωd + iγkÞ,
ð��Γ± Þmn = δm�nΓ±m.

Substituting Eqs. (19, 20) into Eq. (18), we can solve for �D to obtain
Eq. (12).

Slow-gain limit
In the slow-gain limit of ∣ωd∣ ≫ γ∥, all entries of the diagonal matrix ��Γk
are approximately 0 except ð��ΓkÞ00 = � i. In this limit, Eq. (12) simplifies
to �D � D0

�δ with

D0ðrÞ �
DpðrÞ

1 +
P

mjΓmEmðrÞ � θj2
: ð21Þ

Then, Eq. (19) yields Pm ≈ ΓmD0(Em ⋅ θ), so Eq. (11) becomes

�∇×∇× +
ω2

m

c2
εc +

iσ
ωmε0

+ ΓmD0θ
*θ�

� 	� �
Em � 0: ð22Þ

These Eqs. (21, 22) reduce to SALT24,25 in the single-mode or two-
mode regime (with two indices, m =0, 1; Em with m ≠ 0 or 1 has to be
zero unless ωm happens to be the resonant frequency of a third
lasing mode).

Fast-gain limit
In the fast-gain limit where the lasing bandwidth is much smaller than
both γ∥ and γ⊥, we can show that ��Γk � �i��I, ��Γ± � Γ0

��I, and ��E
y��E = ��E��E

y
. In

this limit, Eq. (12) simplifies to

�D � Dpð��I + jΓ0j2��E
y��EÞ

�1
�δ, ð23Þ

where we have applied Γ0 � Γ*0 = � 2ijΓ0j2. Eq. (23) yields

�D + jΓ0j2��E
y��E �D � Dp

�δ: ð24Þ

The entries of the column vector ��E
y��E �D are the Fourier compo-

nents of jEðr,tÞ � θ̂j2Dðr,tÞ. Therefore, if we multiply Eq. (24) to the left
with the row vector ½:::, e2iωdt , eiωdt , 1, e�iωdt , e�2iωdt ,:::�, we obtain the
time evolution Dðr, tÞ+ jΓ0Eðr, tÞ � θ̂j2Dðr, tÞ � DpðrÞ, namely

Dðr, tÞ � DpðrÞ
1 + jΓ0Eðr, tÞ � θ̂j2

: ð25Þ

In this fast-gain limit, the instantaneous population inversion is
given by the instantaneous intensity at that time.

Data availability
The data of PALT calculation and FDTD simulation results presented in
the paper are available on OSF database [https://osf.io/jptza/].

Code availability
Codes that reproduce the results in this study, including the PALT
integral equation solver, stability eigenvalue solver, and
Maxwell–Bloch FDTD simulations, are available on GitHub [https://
github.com/complexphoton/PALT].
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