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1. MAXWELL–BLOCH EQUATIONS IN 3D

In this section, we derive the 3D Maxwell–Bloch (MB) equations, namely Eqs. (1)–(3) of the main text, from the
evolution equation of the atomic density matrix. Here, the active part of the gain medium is modeled by an ensemble
of two-level atoms. For each atom, let Ĥ0 be the atomic Hamiltonian in the absence of external electric fields, with |a⟩
and |b⟩ being the ground state and excited state respectively, at energies ℏωa and ℏωb. In the presence of an external

electrical field Ẽ, the total Hamiltonian Ĥ includes the electric dipole energy er̂ · Ẽ,

Ĥ = Ĥ0 + eẼ · r̂, (S1)

where r̂ is the position operator of the two-level atom, with ⟨a|r̂|a⟩ = ⟨b|r̂|b⟩ = 0 given its spatial symmetry.
The ensemble of atoms can be described by a density matrix ρ̂, which satisfies

∂ρ̂

∂t
=

1

iℏ
[Ĥ, ρ̂] + incoherent terms, (S2)

with the brackets denoting a commutator. The “incoherent terms” here include pumping from the ground state to the
excited state at rate γab, spontaneous emission from the excited state to the ground state at rate γba, and dephasing
of the off-diagonal elements of the density matrix at rate γ⊥. In the basis of |a⟩ and |b⟩,[

ρaa ρab
ρba ρbb

]
=

[
⟨a|ρ̂|a⟩ ⟨a|ρ̂|b⟩
⟨b|ρ̂|a⟩ ⟨b|ρ̂|b⟩

]
, (S3)

the elements of the density matrix then evolve as

∂

∂t
ρaa = γbaρbb − γabρaa −

1

iℏ
Ẽ · (ρbaR∗ − c.c.), (S4)

∂

∂t
ρbb = γabρaa − γbaρbb +

1

iℏ
Ẽ · (ρbaR∗ − c.c.), (S5)

∂

∂t
ρba = −(iωba + γ⊥)ρba +

1

iℏ
(ρbb − ρaa)Ẽ ·R, (S6)

where R = −e⟨b|r̂|a⟩ is the atomic dipole moment, ωba = ωb − ωa is the frequency gap, and c.c. denotes complex
conjugate. Let N be the number density of the two-level atoms, so that Na = Nρaa and Nb = Nρbb are the population
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densities at the ground level and the excited level, respectively. The expectation of the gain-induced polarization is
then P̃ = −eNtr(ρ̂r̂) = P + P∗, where P = NρbaR

∗. Multiplying Eqs. (S4)–(S5) with N and Eq. (S6) with NR∗,
we get

∂

∂t
Na = γbaNb − γabNa −

1

iℏ
Ẽ · (P−P∗), (S7)

∂

∂t
Nb = γabNa − γbaNb +

1

iℏ
Ẽ · (P−P∗), (S8)

∂

∂t
P = −(iωba + γ⊥)P+

1

iℏ
D(Ẽ ·R)R∗, (S9)

where D = Nb −Na is the population inversion. Subtracting Eq. (S7) from Eq. (S8) yields

∂

∂t
D = −γ∥(D −Dp) +

2

iℏ
Ẽ · (P−P∗), (S10)

where γ∥ = γab+γba is the decay rate of the inversion, and Dp = N(γab−γba)/(γab+γba) is the net pumping strength.
Eqs. (S9)–(S10) together with Maxwell’s equations constitute the MB equations in 3D.

For the analytical and numerical analysis, it is more convenient to work with MB equations with dimensionless units.
Let R =

√
R ·R∗ be the amplitude and θ = R/R be the unit vector of the atomic dipole moment. We normalize D

and Dp in the units of R2/(ε0ℏγ⊥), Ẽ in the units of 2R/(ℏ√γ⊥γ∥), and P in the units of 2R/(ε0ℏ
√
γ⊥γ∥). Then the

dimensionless MB equations read

∂

∂t
D = −γ∥(D −Dp)−

iγ∥

2
Ẽ · (P−P∗), (S11)

∂

∂t
P = −(iωba + γ⊥)P− iγ⊥D(Ẽ · θ)θ∗, (S12)

∇× B̃ =
1

c2

(
εc
∂Ẽ

∂t
+
σ

ε0
Ẽ+

∂P̃

∂t

)
, (S13)

∇× Ẽ = −∂B̃
∂t
. (S14)

Our implementation of FDTD simulations (Sec. 8 below) is based directly on Eqs. (S11)–(S14).

We can write the real-valued field Ẽ as Ẽ(r, t) = E(r, t)+E∗(r, t). The spectrum of the lasing field E(r, t) is centered
near the peak-gain frequency of ωba with a bandwidth no greater than the gain bandwidth γ⊥ ≪ ωba. Meanwhile,
the spectrum of E∗(r, t) is centered near −ωba. Similarly for P and P∗. Therefore, the E · P term and the E∗ · P∗

term in Eq. (S11) will oscillate approximately as e−2iωbat and e2iωbat respectively. Since ωba ∼ 1015 rad/s is six orders
of magnitude greater than γ∥ ∼ 109 s−1 for semiconductor lasers operating at optical frequencies, these oscillations
average away before the gain medium can respond, and we can drop the E · P and E∗ · P∗ terms in Eq. (S11).
Similarly the E∗ term in the right-hand side of Eq. (S12) will oscillate near −ωba while the gain-induced polarization
P oscillates near ωba, so we can also drop the E∗ term in the right-hand side of Eq. (S12). With this rotating-wave
approximation, Eqs. (S11)–(S14) become

∂

∂t
D = −γ∥(D −Dp)−

iγ∥

2
(E∗ ·P−E ·P∗), (S15)

∂

∂t
P = −(iωba + γ⊥)P− iγ⊥D(E · θ)θ∗, (S16)

−∇×∇×E− 1

c2

(
εc
∂2

∂t2
+
σ

ε0

∂

∂t

)
E =

1

c2
∂2

∂t2
P, (S17)

These Eq. (S15)–(S17) are the MB equations, Eqs. (1)–(3) of the main text, that we analyze below.

2. SINGLE-MODE LASING SOLUTION AND ACTIVE-CAVITY RESONANCE OPERATOR

In the subsequent sections, we will build our analysis upon the steady-state solution in the single-mode lasing
regime, which features a real-valued lasing frequency ω0 with1,2

D(r, t) = D0(r), (S18)

P(r, t) = P0(r)θ
∗e−iω0t, (S19)

E(r, t) = E0(r)e
−iω0t. (S20)
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We can verify that Eqs. (S18)–(S20) constitute an exact solution of the MB equations, Eqs. (S15)–(S17), when

D0(r) =
Dp(r)

1 + |Γ0E0(r)|2
, (S21)

P0(r) = Γ0D0(r)E0(r), (S22)[
−∇×∇×+

ω2
0

c2

(
εc(r) +

iσ(r)

ω0ε0
+ Γ0D0(r)θ

∗θ·
)]

E0(r) = 0, (S23)

where Γ0 = Γ(ω0), E0 ≡ E0 · θ, and

Γ(ω) ≡ γ⊥
ω − ωba + iγ⊥

. (S24)

Eq. (S23) is repeated as Eq. (4) in the main text.

To facilitate discussions in the next two sections, we introduce the active-cavity wave operator in this single-mode
regime

Ô(ω) = −∇×∇×+
ω2

c2
εeff(r, ω), (S25)

with an outgoing boundary condition, where the effective permittivity profile is

εeff(r, ω) = εc(r) + ε̃(r, ω), ε̃(r, ω) =
iσ(r)

ωε0
+ Γ(ω)D0(r)θ

∗θ · . (S26)

We separate out the gain and loss contributions in ε̃(r, ω), which is generally much smaller than the passive contribution
εc(r). Then, Eq. (S23) can be written as

Ô(ω0)E0 = 0. (S27)

Eq. (S27) is nonlinear in E0(r) because the saturated gain D0(r) in ε̃(r, ω) of the operator Ô(ω) depends on E0(r).
For a given pump strength, after obtaining ω0 and E0(r) by solving Eq. (S27) as a nonlinear equation, it is convenient

to consider operator Ô(ω) with a D0(r) fixed (frozen) by that pre-computed E0(r) but with a variable ω. This

“active cavity wave operator” Ô(ω) defines the resonances3 {ψn(r)} (namely, eigenmodes with an outgoing boundary
condition) of the active cavity at that pump strength,

Ô(ω̃n)ψn = 0, (S28)

where ω̃n is the complex-valued eigen frequency of resonance ψn. Since the gain in operator Ô is fixed, Eq. (S28) is
linear in ψn. By construction, the lasing mode E0 is a resonance of the active cavity with a real-valued eigenvalue of
ω̃n = ω0.

When the pumping strength is below the first lasing threshold Dth
1 , the steady-state solution is E(r, t) = 0, which

trivially satisfies the MB equations, Eqs. (S15)–(S17). Below the first threshold Dth
1 , we can consider operator Ô

with an unsaturated gain (since E = 0), and track its set of eigenvalues {ω̃n}. All of the eigenvalues should have a
negative imaginary part, corresponding to an exponential decay in time. The first threshold is reached when one of the
eigenvalues ω̃n reaches the real-frequency axis, corresponding to a cavity resonance having enough gain to overcome its
radiation loss and absorption loss. With pumping at and above Dth

1 , that eigenvalue stays on the real-frequency axis
as ω0, and the corresponding resonance becomes the lasing mode E0. The amplitude of the lasing mode is determined
self-consistently by solving the nonlinear Eq. (S27).

In the “steady-state ab initio laser theory” (SALT),1,2 the same recipe is continued above the first lasing threshold
Dth

1 . One would track the eigenvalues of the resonances of the active cavity given E0 at each pump strength. The
next threshold Dth

2 is reached when the eigenvalue of another resonance (excluding E0) of the active cavity reaches
the real-frequency axis. We will show in Sec. 4 that such a recipe is rigorous in the limit of γ∥ → 0, where the
gain medium is static. When γ∥ is not negligible, the dynamics of the gain medium can modify the stability of the
single-mode solution such that the next threshold is no longer simply a resonance of the active cavity reaching the
real-frequency axis.
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3. DYNAMIC INVERSION FACTOR ζ

In Sec. II of the main text, we consider a perturbation to the single-mode lasing solution, Eqs. (S18)–(S23) above.
Here, we derive the dynamic inversion factor ζ that quantifies the degree of frequency coupling, producing E−1e

−iω−1t

from E1e
−iω1t in the perturbation. Our starting point is Eq. (6) of the main text, rewritten below as

Ô(ω−1)E−1 = −
ω2
−1

c2
Γ−1(Γ0 − Γ∗

1)

2

γ∥

iγ∥ − ωd
D0E

2
0E

∗
1θ

∗

≈
ω2
−1

c2
γ∥

iγ∥ − ωd
D0E

2
0E

∗
1θ

∗,

(S29)

where Em ≡ Em · θ, Γm = Γ(ωm), ωm = ω0 +mωd. We consider |ωm − ωba| ≪ γ⊥, so that Γm ≈ −i.
To solve Eq. (S29), we expand E−1 in the non-orthogonal basis of the active-cavity resonances {ψn} in Eq. (S28),

E−1 =
∑
n

αnψn. (S30)

Substituting Eq. (S30) into Eq. (S29), subtracting Eq. (S28), and approximating εeff(r, ω) ≈ εc(r), we obtain∑
n

αn(ω
2
−1 − ω̃2

n)εcψn ≈ ω2
−1

γ∥

iγ∥ − ωd
D0E

2
0E

∗
1θ

∗. (S31)

To proceed, we want to solve Eq. (S31) for the expansion coefficients {αn}. The set of resonances {ψn} are not
orthogonal but are biorthogonal,3 which we can utilize to project out αn in Eq. (S31). Consider the Green’s vector
identity,4

ψm · (∇×∇× ψn)− ψn · (∇×∇× ψm) = ∇ · [ψn × (∇× ψm)− ψm × (∇× ψn)]. (S32)

Using the approximation εeff(r, ω) ≈ εc(r) again, from Eq. (S28), we get ∇×∇× ψn ≈ ω̃2
n

c2 εcψn, so

ψm · (∇×∇× ψn)− ψn · (∇×∇× ψm) ≈ ω̃2
n − ω̃2

m

c2
εcψm · ψn (S33)

Substituting Eq. (S33) into Eq. (S32), taking the volume integration over the laser cavity, and applying the divergence
theorem, we get

ω̃2
n − ω̃2

m

c2

ˆ
V

εcψm · ψndr3 ≈
‹

S

[ψn × (∇× ψm)− ψm × (∇× ψn)] · ds, (S34)

where V is the volume of the laser cavity and S is its surface. To proceed, we assume that the resonances {ψn} of
interest have high-enough quality factors that the radiation field on the cavity surface is much weaker than the interior
field, and the right-hand side of Eq. (S34) is negligible compared to the left-hand-side. Under such approximation,
we obtain the biorthogonality relationship,ˆ

V

εcψm · ψndr3 ≈ 0 when ω̃m ̸= ω̃n. (S35)

Multiplying Eq. S31 with ψn, integrating over V , and using the biorthogonality relationship Eq. (S35), we obtain
the coefficient αn of interest,

αn ≈
ω2
−1

ω2
−1 − ω̃2

n

γ∥

iγ∥ − ωd

⟨D0E
2
0E

∗
1ψn · θ∗⟩

⟨εcψn · ψn⟩
, (S36)

where ⟨· · · ⟩ =
´
V
· · · dr3 denotes integration over V . We can see that the coefficient αn is enhanced when (1) the

resonance eigen frequency ω̃n is close to ω−1, (2) the frequency detuning ωd = ω1 − ω0 between the perturbation and
the lasing frequency is small, (3) the spatial overlap |⟨D0E

2
0E

∗
1ψn · θ∗⟩|2 between the excitation source profile and the

resonance profile is large, and (4) the Petermann factor Kn ≡ |⟨εc|ψn|2⟩/⟨εcψn · ψn⟩|2 of the resonance is large.
Among the set {αn}, typically one coefficient will be much larger than the other coefficients. We denote the largest

coefficient as αψ, with ψ denoting the corresponding resonance and ωψ its complex-valued eigen frequency. Such a
ωψ is typically close to ω−1, so

αψ ≈ ω−1

2(ω−1 − ωψ)

γ∥

iγ∥ − ωd

⟨D0E
2
0E

∗
1ψ · θ∗⟩

⟨εcψ · ψ⟩
. (S37)
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Keeping only the dominant contribution, E−1 ≈ αψψ, we obtain the stationary-inversion factor ζ,

⟨|E−1|2⟩
⟨|E1|2⟩

≈ |αψ|2
⟨|ψ|2⟩
⟨|E1|2⟩

≈
γ2∥

ω2
d + γ2∥

ω2
−1/4

|ω−1 − ωψ|2
⟨|ψ|2⟩
⟨|E1|2⟩

∣∣∣∣ ⟨D0E
2
0E

∗
1ψ · θ∗⟩

⟨εcψ · ψ⟩

∣∣∣∣2 ≡ ζ. (S38)

Taking ψ = E0 to be the resonance closest to ω−1, approximating ω2
−1 ≈ ω2

0 , and taking θ to be real-valued, we obtain
Eq. (7) of the main text.

When ω−1 is near a degeneracy, there may be two resonances that both contribute significant. If it is a Hermitian
degeneracy due to symmetry, we can take ψ to be the superposition of the two near-degenerate modes that maximizes
the spatial overlap |⟨D0E

2
0E

∗
1ψn ·θ∗⟩|2 with the excitation source profile. If it is a non-Hermitian degeneracy, the two

resonances will have similar spatial profiles, so the ζ factor will be comparable for the two resonances; using either
one can give an order-of-magnitude estimate of ⟨|E−1|2⟩/⟨|E1|2⟩. Because of the non-orthogonality of the basis {ψn},
projecting onto only one resonance ψ is not quantitatively accurate. For example, approaching an EP, the Petermann
factor (and the associated projection onto one resonance of the EP pair) can diverge, even though the total projection
onto both resonances remains finite due to a cancellation of divergences.5 However, the single-resonance projection
can already provide an order-of-magnitude estimate. For the system considered in Figs. 2–3 of the main text, we
obtain ζ ≈ 0.26 from Eq. (S38), reasonably close to the actual ⟨|E−1|2⟩/⟨|E1|2⟩ ≈ 0.10 computed from PALT just
above the comb threshold Dth

2 = Dth
c , even though the Petermann factor Kn = 28 is already very large.

4. SINGLE-MODE STABILITY ANALYSIS AND THE COMB THRESHOLD

Here, we perform a general stability analysis on the single-mode steady-state lasing solution, Eqs. (S18)–(S23)
above. As the pumping strength is increased above the first threshold Dth

1 , the next threshold Dth
2 will be reached

when the single-mode solution becomes unstable. This second threshold Dth
2 is typically when a second mode turns

on. For a laser sufficiently close to an EP that the ζ factor is not negligible, this threshold Dth
2 = Dth

c is where a
frequency comb emerges. In any of these scenarios, the stability can be determined by perturbing Eqs. (S18)–(S23)
with a small perturbation,6

D(r, t) = D0(r) + δD(r, t), (S39)

P(r, t) = [P0(r) + δP (r, t)]θ∗e−iω0t, (S40)

E(r, t) = [E0(r) + δE(r, t)]e−iω0t, (S41)

and analyzing whether the perturbation decays or grows in time. Plugging Eqs. (S39)–(S41) into Eqs. (S15)–(S17)
and keeping only terms linear to the perturbation (since the perturbation is small), we get

∂

∂t
δD = −γ∥δD −

iγ∥

2
(δE∗P0 + E∗

0δP − δEP ∗
0 − E0δP

∗), (S42)

∂

∂t
δP = i(ω0 − ωba + iγ⊥)δP − iγ⊥(δDE0 +D0δE), (S43)

−∇×∇× δE− 1

c2

[
εc

(
∂

∂t
− iω0

)2

+
σ

ε0

(
∂

∂t
− iω0

)]
δE =

1

c2

(
∂

∂t
− iω0

)2

δPθ∗, (S44)

where δE = δE · θ. The zeroth-order terms reduce to Eq. (S21)–(S23) and are always satisfied. Eqs. (S42)–(S44)
apply to any perturbation. Since they define a linear dynamical system for δE(r, t), δE∗(r, t), δP (r, t), δP ∗(r, t), and
δD(r, t), the time evolution of any perturbation can be written as a superposition of the eigenvectors of the linear
system. Therefore, for the purpose of a stability analysis, it suffices to characterize the dynamics of the eigenvectors
(namely, the eigenvalues).

In previous work,6–9 such an eigen analysis was carried out by separating the real and imaginary parts of Eqs. (S42)–
(S44) and considering an aggregated real-valued vector u = (Re δE, Im δE,Re δP, Im δP, δD). The resulting equations
are suitable for numerical solution but have changed so much from the original wave equations that it is difficult to
analyze them, interpret the spectrum and other physical quantities, or relate them to the single-resonance-turn-on
picture of SALT.

In the preceding derivation of the dynamic inversion factor ζ ≈ |E−1|2/|E1|2, we showed that a monochromatic
perturbationE1e

−i(ω0+ωd)t necessarily results in another frequency componentE−1e
−i(ω0−ωd)t when ζ is not negligible.

We also showed that E±1, P±1, and D±1 are all proportional to the perturbation. Also, from the δE∗P0 term in
Eq. (S42), we see that a perturbation with e−iωdt time dependence [note that e−iω0t is already factored out from the
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perturbation in Eqs. (S40)–(S41)] will generate eiω
∗
dt time dependence. Therefore, here we consider a multi-spectral

perturbation with both ωd and −ω∗
d frequency components as the trial eigenvector,

δD(r, t) = D1(r)e
−iωdt +D∗

1(r)e
iω∗

dt, (S45)

δP (r, t) = P1(r)e
−iωdt + P−1(r)e

iω∗
dt, (S46)

δE(r, t) = E1(r)e
−iωdt +E−1(r)e

iω∗
dt. (S47)

The “frequency difference” ωd here is the eigenvalue of the linear perturbation problem and is complex-valued in
general. Substituting into Eqs. (S42)–(S44), we can verify that the ansatz of Eqs. (S45)–(S47) has the correct time
dependencies and constitutes a valid eigenvector for the linear dynamical system.

From the e−iωdt and eiω
∗
dt terms of Eq. (S42)–(S44), we obtain

D1 = 0.5Γ∥(E
∗
−1P0 + E∗

0P1 − E1P
∗
0 − E0P

∗
−1), (S48)

P±1 = Γ±(D±1E0 +D0E±1), (S49)

−∇×∇×E±1 +
ω±1

c2

(
εc +

iσ

ω±1ε0

)
E±1 = −ω±1

c2
P±1θ

∗, (S50)

where ω1 = ω0 + ωd, ω−1 = ω0 − ω∗
d, Γ∥ ≡ γ∥/(ωd + iγ∥), Γ± = Γ(ω±1), and D−1 = D∗

1 . Substituting Eqs. (S22) and
(S49) into Eq. (S48), we can eliminate the gain-induced polarization to yield

D1 = 0.5Γ∥
[
(Γ+ − Γ∗

−)|E0|2D1 + (Γ+ − Γ∗
0)D0E

∗
0E1 + (Γ0 − Γ∗

−)D0E0E
∗
−1

]
, (S51)

from which D1 can be solved as

D1 = D0(χ+E1 + χ−E
∗
−1), (S52)

with

χ+ =
0.5Γ∥(Γ+ − Γ∗

0)E
∗
0

1− 0.5Γ∥(Γ+ − Γ∗
−)|E0|2

, (S53)

χ− =
0.5Γ∥(Γ0 − Γ∗

−)E0

1− 0.5Γ∥(Γ+ − Γ∗
−)|E0|2

. (S54)

Substituting Eqs. (S49) and (S52) into Eq. (S50), we can further eliminate D1 and obtain an eigenvalue problem for
E±1(r) along:

Ô(ω1)E1 +
ω2
1

c2
Γ+D0E0(χ+E1 + χ−E

∗
−1)θ

∗ = 0, (S55)

Ô(ω−1)E−1 +
ω2
−1

c2
Γ−D0E0(χ

∗
+E

∗
1 + χ∗

−E−1)θ
∗ = 0, (S56)

where Ô(ω) is the active-cavity wave operator defined in Eq. (S25).
Eqs. (S55)–(S56) show that the two spectral components E±1(r)e

−iω±1t of the perturbation are explicitly coupled
through E0χ±, which arises from the dynamic inversion D1e

−iωdt and is proportional to its relaxation rate γ∥. We can
take the complex conjugate of Eq. (S56), so that Eq. (S55) and [Eq. (S56)]∗ together forms a coupled eigenproblem
for E1 (with an outgoing boundary condition) and E∗

−1 (with an incoming boundary condition). Solving this coupled
eigenproblem yields the complex eigenvalue ωd and the associated perturbation in Eqs. (S45)–(S47). As a reminder,
ω±1, Γ±, χ±, and the Γ∥ in χ± all depend on ωd, so this is a nonlinear eigenvalue problem.
Eqs. (S55)–(S56) always have a trivial solution with ωd = 0 and (E1,E−1) = (A,−A∗)E0, where A = Ar + iAi

is any constant, such that the perturbation δE(r, t)e−iω0t = 2iAiE0(r)e
−iω0t is marginally stable and is ±90-degree

out-of-phase with the lasing mode E0(r)e
−iω0t. Here, the coupling terms are cancelled, χ+E1 + χ−E

∗
−1 = 0, and

Eqs. (S55)–(S56) are satisfied since Ô(ω0)E0 = 0. This trivial solution must exist because there is a gauge degree of
freedom in the single-mode solution Eq. (S20): E(r, t) = eiϕE0(r)e

−iω0t with any real-valued global phase ϕ is also a
solution of the MB equations.
At the first threshold Dth

1 , E0 = 0, so the coupling strength E0χ± is zero, and Eqs. (S55)–(S56) decouple to

Ô(ω±1)E±1 = 0, same as Eq. (S28). Therefore, the set of stability eigenvalues {ωd} above Dth
1 is continuously

connected to {ω̃n − ω0} below Dth
1 , where {ω̃n} is the set of eigen frequencies of the active-cavity resonances with

6



an unsaturated gain, defined in Eq. (S28). Above the first threshold Dth
1 , E0 ̸= 0, so Eqs. (S55)–(S56) are no longer

equivalent to Eq. (S28), and each stability eigenmode evolves into a superposition of the cavity resonances.
Above Dth

1 , we can track how the set of complex eigenvalues {ωd} evolves with the pumping strength. Near Dth
1 ,

all eigenvalues (except the trivial one, ωd = 0) have a negative imaginary part, so any perturbation δE(r, t), δP (r, t),
and δD(r, t) has to either decay exponentially in time or merely change the global phase of the lasing mode; here, the
single-mode lasing solution Eqs. (S18)–(S23) is stable. When one of the non-trivial ωd reaches the real-frequency axis,
single-mode lasing is no longer stable since any perturbation that overlaps with the eigenvector with that real-valued
ωd will start to grow exponentially. Therefore, the crossing of ωd with the real-frequency axis marks the second
threshold Dth

2 . Just above that threshold, the perturbations E1 and E−1 continuously evolve into two comb lines in
Eq. (11) of the main text while that ωd stays on the real axis and becomes the comb spacing.

A stationary-inversion system corresponds to the limit of γ∥ → 0, where χ± → 0, the dynamic inversion D1 in
the perturbation eigenvector vanishes, and E±1 in Eqs. (S55)–(S56) decouple. Each of the decoupled E±1 follows

Ô(ω±1)E±1 = 0, same as Eq. (S28). In this limit, the stability eigenmodes are the resonances {ψn} of the active cavity
εeff . This reduces to the formalism of SALT,1,2 where the second threshold Dth

2 corresponds to a second individual
resonance of the active cavity receiving enough gain to overcome its loss and reach the real-frequency axis.

For a dynamic system where γ∥ is not negligible—more specifically, when the dynamic inversion factor ζ ≈
|E−1|2/|E1|2 is not negligible—the eigenmode (E1e

−iω1t,E−1e
−iω−1t) in Eqs. (S55)–(S56) is a multi-spectral per-

turbation that comes with a dynamic inversion D1. In this case, E1 (and similarly for E−1) satisfies Eqs. (S55)–(S56)
but not Eq. (S28), so it is no longer an isolated resonance {ψn} of the active cavity; it is a mixture of resonances.
One can quantify the amount of mixing by projecting E1 onto the two dominant resonances,

E1√
⟨εcE2

1⟩
≈

2∑
n=1

⟨εcE1 · ψn⟩√
⟨εcE2

1⟩
√
⟨εcψ2

n⟩
ψn√
⟨εcψ2

n⟩
, (S57)

where E2
1 = E1 · E1 and ψ2

n = ψn · ψn. For the near-EP laser in the main text at Dth
2 , the normalized projection

factors are ∣∣∣∣ ⟨εcE1 · ψ1⟩√
⟨εcE2

1⟩
√

⟨εcψ2
1⟩

∣∣∣∣2 = 0.26,

∣∣∣∣ ⟨εcE1 · ψ2⟩√
⟨εcE2

1⟩
√
⟨εcψ2

2⟩

∣∣∣∣2 = 0.80, (S58)

which confirms that E1 has significant contributions from both resonances.
An intermediate case is possible for Hermitian degeneracies arising from symmetry,6,7 where ζ can be small because

there is no Petermann factor enhancement, but the ratio γ∥/ωd can be large. Since ζ is small, E−1 is negligible,
and Eqs. (S55)–(S56) approximately decouple. The decoupled eigenproblem Eq. (S55) for E1 differs from Eq. (S28)
because of the nonzero χ+ (which is proportional to γ∥) induced by a dynamic inversion in the perturbation. Here, the

stability eigenmode E1 can also be a mixture of the near-degenerate active-cavity resonances6,7 but is monochromatic.

5. PALT FOR DIRECT-BANDGAP SEMICONDUCTOR LASERS

In the preceding sections, we considered the Maxwell–Bloch equations for an ensemble of two-level atoms, which
captures the essential properties of the nonlinear gain in a minimal form. Here, we consider a more quantitative
model for a semiconductor gain medium.10–12 Supplementary Fig. 1 shows the band structure of a direct-bandgap
semiconductor near the bandgap. The electrons comply with the density matrix equation, Eq. (S2), with the same
Hamiltonian expressed by Eq. (S1). But unlike the two-level system, here the electron’s Hilbert space has more than

two dimensions. Let {|B,k⟩} be the eigenstates of Ĥ0, where B represents valence (B = v) or conduction (B = c)
band and k the Bloch wave vector. Let N be the total density of electrons on both bands. NBk = N⟨B,k|ρ̂|B,k⟩
is the electron population at band B at k. The light emission/absorption occurs when electrons transit between the
valence band and the conduction band. In direct-bandgap semiconductor lasers, these radiative inter-band transitions
only occur at the same k, shown by the black arrows in Supplementary Fig. 1. It means ⟨B2,k2|r̂|B1,k1⟩ = 0
when k1 ̸= k2. We also assume spatial symmetry, ⟨B,k|r̂|B,k⟩ = 0 for B = v, c. Upon that, we can derive the

(observable) optical polarization P̃ as

P̃ = −eNtr(ρ̂r̂) =
∑
k

(Pk +Pk
∗), (S59)

where

Pk = N⟨c,k|ρ̂|v,k⟩Rk
∗, (S60)

Rk = −e⟨c,k|r̂|v,k⟩. (S61)
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Similar to the derivation of Eqs. (S7)–(S9), we decompose Eq. (S2) under {|B,k⟩} to get the equations for Nvk,
Nck, and Pk,

∂

∂t
Nvk =

∑
B′,k′

γ(B′k′)(vk)NB′k′ −
∑
B′,k′

γ(vk)(B′k′)Nvk − 1

iℏ
Ẽ · (Pk −Pk

∗), (S62)

∂

∂t
Nck =

∑
B′,k′

γ(B′k′)(vk)NB′k′ −
∑
B′k′

γ(vk)(B′k′)Nck +
1

iℏ
Ẽ · (Pk −Pk

∗), (S63)

∂

∂t
Pk = −(iωk + γ⊥k)Pk +

1

iℏ
(E ·Rk)(Nck −Nvk)R

∗
k, (S64)

At each k point, ωk = ωv(k) − ωc(k), where ℏωv(k) and ℏωc(k) are the energies of valence and conduction band,
respectively. γ⊥k is the dephasing rate. The summation terms in Eq. (S62) and Eq. (S63) describe incoherent
transitions, including spontaneous emission, pumping, and intra-band non-radiative scattering caused by atomic
collisions. It is neither feasible nor necessary to determine each γ(B′k′)(Bk). The intra-band scattering happens much
faster than inter-band transitions. Therefore, in the time scale of our interest, the electron occupation of each band
is at a quasi-equilibrium, allowing us to simplify Eq. (S62) and Eq. (S63) by statistics,

∂

∂t
Nvk = −γvk[Nvk −Nfv(k)]−

1

iℏ
Ẽ · (Pk −Pk

∗), (S65)

∂

∂t
Nck = −γck[Nck −Nfc(k)] +

1

iℏ
Ẽ · (Pk −Pk

∗), (S66)

where γvk and γck are relaxation rates, and fv(k) and fc(k) are Fermi–Dirac distributions,

fv,c(k) =
1

e(ℏωv,c(k)−µv,c)/(kBT ) + 1
. (S67)

µv,c is the chemical potential of valence/conduction band. kB is the Boltzmann constant, and T is temperature in
Kelvin. At thermal equilibrium, µc = µv, so fv(k) > fc(k). When being pumped, µc > µv. So, the pumping strength
can be defined as µ∆ = µc − µv. To turn on the laser, µ∆ must be large enough to achieve population inversion,
fv(k) < fc(k).
Eqs. (S64)–(S66) generalize Eqs. (S9)–(S10) to a direct-bandgap semiconductor, which forms the MB equations

together with Maxwell’s equations, Eq. (S17).
For frequency combs, we consider the trial solution,

E(r, t) = e−iω0t
+∞∑

m=−∞
Em(r)e−imωdt, (S68)

Pk(r, t) = e−iω0t
+∞∑

m=−∞
Rk

∗Pkm(r)e−imωdt, (S69)

NBk(r, t) =

+∞∑
m=−∞

NBkm(r)e−imωdt. B = c, v. (S70)
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𝐸 field

Supplementary Fig. 1. The band structure of a direct-bandgap semiconductor.
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Applying the same mathematical steps that lead to Eqs. (18-20) in the Method section of the main text, we can
show that Eqs. (S68)–(S70) provide an exact solution of the MB equations for a direct-bandgap semiconductor under
rotating-wave approximation. Therefore, we conclude that the same EP comb phenomenon also exists here.

The above derivations lead to

N̄vk = Nfv(k)δ̄ − ¯̄Γvk(
¯̄E†
kP̄k − ¯̄EkP̄

∗
k−), (S71)

N̄ck = Nfc(k)δ̄ +
¯̄Γck(

¯̄E†
kP̄k − ¯̄EkP̄

∗
k−), (S72)

P̄k = ¯̄Γk+
¯̄EkD̄k, (S73)

P̄ ∗
k− = ¯̄Γ†

k−
¯̄E†
kD̄k. (S74)

The notation follows that of the main text:
Column vectors: (P̄k)m = Pkm, (P̄ ∗

k−)m = P ∗
k,−m, (N̄Bk)m = NBkm for (B = c, v), D̄k = N̄ck − N̄vk and

(δ̄)m = δm.

Matrices: ( ¯̄E)mn = Em−n·Rk, (
¯̄ΓBk)mn = δm−n/[ℏ(mωd+iγBk)], (

¯̄Γk±)mn = δm−n/[ℏ(±mωd+ω0−ωk+iγ⊥k)].
Then we substitute Eqs. (S73)–(S74) into Eqs. (S72)–(S71) to solve for D̄k,

D̄k = N [ ¯̄I − (¯̄Γvk + ¯̄Γck)(
¯̄E†
k
¯̄Γk+

¯̄Ek − ¯̄Ek
¯̄Γ†
k−

¯̄E†
k)]

−1[fc(k)− fv(k)]δ̄, (S75)

which is analogous to Eq. (12) in the main text. Substituting the polarization in Eqs. (S73), (S69), (S59) into
Maxwell’s equations Eq. (S17), we get the wave equation

−∇×∇×Em +
ω2
m

c2

(
εc +

iσ

ωmε0

)
Em = −ω

2
m

c2

∑
k

(¯̄Γk+
¯̄EkD̄k)mRk

∗, (S76)

which is analogous to Eq. (11) in the main text. Note that although Eqs. (S75)–(S76) are derived for semiconductor
lasers, they also apply to multi-level gain media.

6. SYSTEM PARAMETERS AND PROPERTIES

Supplementary Fig. 2a shows the parameters of the one-dimensional (1D) EP laser considered in the main text.
The pumping profile is

Dp(x) =

{
0.5Dmax

[
1− cos

(
2πx
L

)]
, 0 < x < L

0, elsewhere
(S77)

with L = 2050 nm being the length of the first cavity. The two cavities’ lengths, the geometric parameters of the
middle distributed Bragg reflector (DBR), and the conductivity σ are tuned coarsely (in 10 nm steps) to bring the
system close to an EP around ωba at the first lasing threshold Dth

1 . The absorption in the passive cavity is fixed at
σ/ϵ0 = 4.9 ps−1 when Dmax is below the comb threshold Dth

2 = Dth
c = 0.064 and raised linearly with Dmax above the

comb threshold.
Supplementary Fig. 3 compares (1) the comb spectrum in Fig. 3g of the main text at ∆ = 0, Dmax = 0.2,

σ/ε0 = 8.1 ps−1 with (2) the nonlinearity-frozen active-cavity eigenvalues {ω̃n} of Eq. (S28) for the same parameters
and using the lasing mode E0 from SALT (which predicts the system to stay single-mode at Dmax = 0.2). We see that
the two center comb lines {ω0, ω1} lie close to the two near-degenerate active-cavity eigenvalues, {Re(ω̃0),Re(ω̃1)}.
The other comb lines do not line up with any additional cavity modes (which are far away in frequency) since they
are generated by the nonlinear gain through dynamic four-wave mixing rather than by the other cavity modes. Note
that Im(ω̃1) has moved down on the complex-frequency plane (i.e., becomes more lossy) compared to its value at the
comb threshold Dmax = 0.064 (see Fig. 2d of the main text) because of the increased absorption σ.

7. PALT SOLUTION THROUGH VOLUME INTEGRAL EQUATION

For the 1D system above, θ = ẑ,Em = Emθ∗, ∂y = ∂z = 0, and Eq. (15) from the main text can be simplified as

d2

dx2
Em +

ω2
m

c2

(
εc +

iσ

ωmε0

)
Em = −ω

2
m

c2
Pm. (S78)
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Here, the gain-induced polarization Pm = Pm(E0, E±1, ...) on the right-hand side depends nonlinearly on the fields at
all frequencies {ωm} and is given by Eq. (14) and Eq. (12). We want to solve this system of nonlinear equations for
the complex-valued {Em(x)}m and the real-valued ω0 and ωd.
In prior work on SALT, the analogous equations are numerically solved in differential form by expanding Em(x)

in a set of threshold constant flux (TCF) modes1 or with finite-difference frequency-domain (FDFD) discretization.2

Both approaches would be suitable for a typical system away from EP. However, the hyper sensitivity near an EP
amplifies numerical error and requires an unusually high accuracy, and we found both methods to be inefficient for
the present system given the desired accuracy.

Here, we adopt a volume-integral approach instead. We define the retarded Green’s function Gm(x, x′) of the cold
cavity at frequency ωm by

∂2

∂x2
Gm(x, x′) +

ω2
m

c2

[
εc(x) +

iσ(x)

ωmε0

]
Gm(x, x′) = −ω

2
m

c2
δ(x− x′), (S79)

with an outgoing boundary condition. Given Gm(x, x′), Eq. (S78) can be written in integral form as

Em(x) =

ˆ ∞

−∞
Gm(x, x′)Pm(x′)dx′. (S80)

Since the cold cavity in Eq. (S79) consists of a 1D stack of piecewise-constant permittivity values, we can efficiently
solve for the Green’s function Gm(x, x′) semi-analytically with a high precision; such solution captures all linear effects
of the cold cavity, including the DBR confinement, the oscillatory nature of the resonances, and their radiation loss.
Then, Eq. (S80) only needs to handle effects of the nonlinear gain, which changes relatively slowly and smoothly. Also,
since the gain-induced polarization Pm vanishes outside of the pumped region, the integration range in Eq. (S80) can
be reduced to the active cavity 0 ≤ x′ ≤ L.
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frequency.

For numerical calculation, we truncate the frequency summation to 2M + 1 frequencies with m = −M,−M +
1, · · · ,M and approximate the integration of Eq. (S80) with the trapezoidal rule

Em(xj) =

K∑
k=0

Gm(xj , xk)Pm(xk)∆xk, (S81)

where xk = kL/K, ∆x0 = ∆xK = L/(2K), and ∆xk = L/K for k = 1, · · · ,K − 1. Evaluating Eq. (S81) with
j = 0, 1, · · · ,K yields (2M + 1)(K + 1) complex-valued equations with (2M + 1)(K + 1) complex-valued scalar
unknowns: {Em(xj)} with m ∈ [−M,M ] and j ∈ [0,K]. Additionally, there are two more real-valued unknowns:
ω0 and ωd. To match the number of equations and the number of unknowns, we recognize that when {Em(xj)} is a
solution, {e−iΨ0−imΨdEm(xj) is also a solution for any real-valued Ψ0 and Ψd. So, we choose Ψ0 and Ψd such that
E0(x0) and E1(x0) are real-valued. Then, we have the following 2(2M + 1)(K + 1) real-valued variables

Variables =



Im[E−M (x0)] Re[E−M (x0)] . . . Re[E−M (xK)]
...

...
...

...
ω0 Re[E0(x0)] ... Re[E0(xK)]
ωd Re[E1(x0)] ... Re[E1(xK)]
...

...
...

...
Im[EM (x0)] Re[EM (x0)] . . . Re[EM (xK)]


, (S82)

with the same number of real-valued equations. We solve this system of nonlinear equations with the fsolve function
in MATLAB. Given Em(xj) at these K + 1 points, we can evaluate Eq. (S81) at other values of xj to obtain a
continuous profile Em(x) anywhere (including with x outside the pumped cavity or outside the DBR mirrors). For
the example in this paper, we use M = 7 and K = 200, which is sufficient to reach four digits of accuracy for ωd.
In contrast, a differential finite-difference approach will require over 100 times more spatial grid points to reach a
comparable accuracy.

We adopt the same volume integral approach to solve for ω0 and E0 in the single-mode lasing regime of Eq. (S23)
and to solve the stability eigenvalue problem of Eqs. (S55)–(S56).

8. FDTD SIMULATIONS OF THE MAXWELL–BLOCH EQUATIONS

To validate the PALT predictions, we additionally carry out direct integration of the MB equations using the finite-
difference time-domain (FDTD) method. Here, we directly work with the real-valued fields, Ẽ, B, Re(P), Im(P) and
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D in Eqs. (S11)–(S14) without introducing the rotating-wave approximation. Details on the FDTD discretization are
given in Ref..13 For the 1D simulation here, we implement the outgoing boundary analytically.14

Due to the enhanced sensitivity of EPs, a very fine spatial discretization is required for the FDTD simulations to
reach enough accuracy to reproduce the PALT results for the EP laser described in Sec. 6 above. Here, we set the
spatial grid size to be ∆x = 0.25 nm and the time step size to be ∆t = ∆x/c. This requires over one billion time
steps to evolve the system by just one relaxation time 1/γ∥ = 1 ns of the gain medium. Further reducing ∆x can
make FDTD agree even closer to PALT but will incur higher computing costs.

In the absence of noise, the laser spectrum at long times should have zero linewidths. The linewidths in Fig. 2(g,h)
of the main text come from a finite temporal window in the FDTD simulations. A frequency comb solution features
electrical field

Ẽ(r, t) = E(r, t) +E∗(r, t) = e−iω0t
∑
m

Em(r)e−imωdt + c.c., −∞ < t <∞. (S83)

Fourier transform (FT) of the infinite time series in Eq. (S83) yields

FT
{
Ẽ(r, t)

}
= 2π

∑
m

Em(r)δ(ω − ωm) + 2π
∑
m

E∗
m(r)δ(ω + ωm), (S84)

which has zero linewidths. In practice, even after the transient behaviors settle away in a FDTD simulation, we will
only have access to data within a finite duration: one section of Eq. (S83) in time. Let T be the duration of the

long-time data taken from Ẽ(r, t). The truncated data is then expressed as w(t)Ẽ(r, t), where w(t) is a finite-sized
window function confined within −0.5T < t < 0.5T . Let W (∆ω) be the Fourier transform of w(t). Then, the Fourier
transform of the practical (truncated) data is

FT
{
w(t) Ẽ(r, t)

}
=
∑
m

Em(r)W (ω − ωm) +
∑
m

E∗
m(r)W (ω + ωm). (S85)

The raw FDTD data correspond to a rectangular window for w(t), whose spectrum W (∆ω) is a sinc function with
bandwidth 2π/T , which has side peaks that decay slowly as (∆ωT )−1. The side peaks may corrupt the underlying
comb spectrum. A brute-force way to suppress the side peaks is to use a sample duration T that is many orders of
magnitude beyond the temporal periodicity τ = 2π/ωd, so that the side peaks are negligible at ∆ω = mωd. But
doing so is wasteful and computationally costly since τ ≈ 50 ps is large in the near-EP system studied here. To more
efficiently suppress the side peaks of the window function spectrum, we use a Hann window instead,

w(t) =

{
1
2

[
1 + cos

(
2πt
T

)]
, −0.5T < t < 0.5T,

0, otherwise.
(S86)

Its Fourier transform W (∆ω) has a wider center lobe, but the side peaks decay much faster as (∆ωT )−3, allowing a
much smaller sampling duration T . Here, W (∆ω = 0) = T/2, so in Fig. 2(g,h) of the main text we plot

Eω(r) ≡
2

T
FT
{
w(t) ẼFDTD(r, t)

}
, (S87)

such that the peaks of |Eω|2 will equal |Em|2 in the long-time limit.

After Ẽ(x, t) and D(x, t) settle down, we continue to run the simulation for T = 800 ps ≈ 16τ while recording

Ẽ(x0, t) at x = x0. We record one data point per 20∆t, which is over a hundred data points per oscillation, well above
the Nyquist sampling rate. A fast Fourier transform (FFT)15 is then used to compute the spectrum. To ensure that
the frequency grid of FFT does not accidentally miss the narrow peak of each comb line, we pad zeros on both sides
of the temporal data after the Hann window and before the FFT.

9. EXACT-EP LASER

As shown in Supplementary Fig. 3, we did not tune to an exact EP for the system considered in the main text.
There, the system is tuned close to an EP at the first threshold (Dmax = Dth

1 ) and stays close to the EP in the
single-mode lasing regime when gain saturation is accounted for. The near-EP single-mode lasing state remains stable
until when the pumping strength reaches the comb threshold Dth

2 = Dth
c .

In this section, we consider the less realistic but conceptually interesting question: what happens when we tune the
system to an exact EP? An EP below the lasing threshold Dth

1 (such as the EP in Supplementary Fig. 3) is not
accessible at steady state. So, we are interested in an EP above Dth

1 .
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EP at Dmax = DEP = 0.02000. The E0(r) in Eq. (S21) is fixed to the E0(r) at Dmax = DEP to make the operator Ô linear
throughout the evolution.

To be clear, here we consider an (almost) exact EP of the active-cavity wave operator Ô in Eq. (S28). For a
given pump strength, after solving the nonlinear Eq. (S27) to obtain the single-mode lasing state E0(r), we consider

the saturated gain D0(r) with the E0(r) in Eq. (S21) fixed, which defines the linear operator Ô in Eq. (S28). We

then tune the system parameters with higher precisions to bring this nonlinearity-frozen operator Ô to an EP. By
tuning the length of the passive cavity to 1339.985 nm and the absorption to σ/ε0 = 4.021 ps−1, we bring the system
very close to a single-mode lasing EP at Dmax = DEP = 0.02000 > Dth

1 = 0.01336. Here, the eigenvalue difference
|ω̃0 − ω̃1| ≈ 0.02 ps−1 is around 3000 times smaller than the free spectral range of the overall cavity. The Petermann
factors are K1 = 3704 and K2 = 369, much larger than those of the near-EP system in Sec. 6. Supplementary
Fig. 4 shows the evolution of the two eigenvalues ω̃0 and ω̃1 of Eq. (S28) as a function of Dmax, where we make the

operator Ô linear throughout the evolution by fixing the E0(r) in Eq. (S21) to the E0(r) at the EP with pumping
strength Dmax = DEP.

Like the near-EP example considered in the main text, if one were to apply SALT to this exact-EP system, one
would incorrectly conclude that the system stays in the single-mode lasing regime over a wide range of pumping values
with Dmax > Dth

1 , including at Dmax = DEP, for the same reason as described in Sec. 6. However, when applying
the PALT single-mode stability analysis by solving Eqs. (S55)–(S56) on the EP state, we find a stability eigenvalue of
ωd = (0.0557 + 0.0254i) ps−1 with a positive imaginary part, indicating that this exact-EP state is in fact unstable.
This result is consistent with Ref. [9], which also found a single-mode lasing EP to be unstable in a different coupled
cavity system but did not find what state the system would evolve into.

Equipped with PALT, we can now find out what state the laser evolves to when the single-mode lasing EP is
unstable. We fix the other system parameters and gradually increase the pumping strength, starting from zero pump.
With the PALT stability analysis, we find the single-mode solution to be stable only within a very small range of
pumping strengths, Dth

1 = 0.01336 < Dmax < Dth
2 = Dth

c = 0.01346. At the comb threshold Dth
c , the laser develops

multiple frequencies with a repetition rate of 2.3 GHz. Supplementary Fig. 5 shows the spectra at different Dmax,
comparing the exact PALT and the SALT predictions. Because the absorption is not raised together with the pumping
strength, the comb spacing increases above the comb threshold. At Dmax = DEP = 0.02000, the laser operates as a
stable comb with 14.5 GHz repetition rate. In other words, the exact lasing EP is unreachable. The system evolves
into an EP comb before reaching the unstable exact EP.
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Supplementary Fig. 5. The spectrum of the exact-EP laser in Supplementary Fig. 4 at different pumping strengths, calculated
by PALT and SALT. a The spectrum at a Dmax of 0.0135, which is slightly above the comb threshold. b–c The evolution of
the spectrum as Dmax increases from the comb threshold towards the exact exceptional point. d The spectrum at the exact
exceptional point, Dmax = DEP, where the laser operates as a stable comb even though SALT incorrectly Dmax increases from
predicts a single-mode EP behavior. x0 ≈ 1.0 µm is the location marked in Fig. 2b of the main text.
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