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We look at various forms of spectrum and associated pseudospectrum that can 
be defined for noncommuting d-tuples of Hermitian elements of a C∗-algebra. In 
particular, we focus on the forms of multivariable pseudospectra that are finding 
applications in physics. The emphasis is on theoretical calculations of examples, in 
particular for noncommuting pairs and triple of operators on infinite dimensional 
Hilbert space. In particular, we look at the universal pair of projections in a C∗-
algebra, the usual position and momentum operators, and triples of tridiagonal 
operators. We prove a relation between the quadratic pseudospectrum and Clifford 
pseudospectra, as well as results about how symmetries in a tuple of operators can 
lead to a symmetry in the various pseudospectra.

© 2025 Elsevier Inc. All rights are reserved, including those for text and data 
mining, AI training, and similar technologies.

1. Introduction

Given A = (A1, . . . , Ad), a noncommuting d-tuple of bounded linear Hermitian operators on Hilbert 
space, so Aj = A∗

j ∈ B(H), there are many competing notions of a joint spectrum. The one that has been 
involved in recent developments in photonics [3,7], metamaterials [10] and condensed matter physics [27], is 
the Clifford spectrum Λ(A) and the more general Clifford pseudospectrum. What sets this apart from other 
definitions of joint pseudospectrum is that it naturally leads to fast numerical algorithms that apply to 
finite models of quantum materials. Here we look at computing the Clifford spectrum and pseudospectrum 
of d-tuples of collections of operators, some related to weighted-shifts, on separable Hilbert space.

The Clifford spectrum is a closed, bounded subset of Rd. To define it, we define first the spectral localizer

Lλ(A) =
d ∑

j=1 
(Aj − λjI) ⊗ Γj .
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Here (Γ1, . . . ,Γd) are matrices that satisfy the relations

Γ∗
j = Γj , (j = 1, . . . , d)

Γ2
j = 1, (j = 1, . . . , d)

ΓjΓk = −ΓkΓj , (j �= k)

and we refer to these as a representation of the Clifford relations. It is important that the spectral localizer is 
Hermitian, at least in this context where the Aj are all Hermitian. In physics, this assumption is sometimes 
dropped [7,13], but we stick with the Hermitian setting here.

It does not matter what representation we use [4, Lemma 1.2], so generally we take an irreducible 
representation, which means these matrices are of size 2�d/2�. For d = 2 a standard choice is

Γ1 = σx, Γ2 = σy (1.1)

and for d = 3 the standard choice is

Γ1 = σx, Γ2 = σy, Γ3 = σz. (1.2)

Here we are using the Pauli spin matrices

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

The Clifford spectrum is then

ΛC(A) =
{
λ ∈ Rd

∣∣Lλ(A) is not invertible
}
. (1.3)

We will see that an interesting subset of this is the essential Clifford spectrum, defined as

ΛC
e (A) =

{
λ ∈ Rd

∣∣Lλ(A) is not Fredholm
}
.

From a mathematical point of view, there is much that is unknown about the Clifford spectrum. We 
are not even sure if it can be the empty set [4, §8], although a lot of evidence says this does not hap-
pen. Most of the examples examined so far have required computer calculations, so most examples have 
been finite-dimensional. The need for a computer to assist in calculations is not surprising, as the Clifford 
pseudospectrum was designed to work well in computer models of quantum systems.

Here we move on to infinite-dimensional examples. In most cases, we work inside the Toeplitz algebra, 
so that we work with easy C∗-algebras inside the Calkin algebra to calculate most of the Clifford spectrum, 
and then reduce the search for the rest of the Clifford spectrum to a calculation involving some difference 
equations. We are then able to find infinite-dimensional examples where the Clifford spectrum looks very 
different from the Clifford spectra that arise from similar examples in finitely many dimensions.

If A = (A1, . . . , Ad), where each Aj is an Hermitian element of a unital C∗-algebra A, the definition 
of Clifford spectrum still makes sense. Taking the Γj to be matrices in M2�d/2�(C), we treat Lλ(A) as an 
element of M2�d/2�(A) ∼ = A ⊗M2�d/2�(C). We now are treating I as the identity element of A. As Λ(A) is 
defined in Eq. (1.3), in term of invertiblity, we find we have spectral permanence. That is, if A is a unital 
C∗-subalgebra of B, then we get the same result if we compute Λ(A) working in M2�d/2�(B) as we do if 
working in M2�d/2�(A).
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2. Symmetries and ∗-homomorphisms

We collect here some basic lemmas on the Clifford spectrum in C∗-algebras. We already discussed spectral 
permanence, so we already know the behavior of the Clifford spectrum with respect to an embedding of 
C∗-algebras.

Theorem 2.1. Suppose that ϕ : A → B is a unital ∗-homomorphism between unital C∗-algebras. If A1, . . . , Ad

are Hermitian elements of A then

ΛC(ϕ(A1), . . . , ϕ(Ad)) ⊆ ΛC(A1, . . . , Ad). (2.1)

If ϕ is one-to-one, then the inclusion in Equation (2.1) becomes an equality.

Proof. Since

(ϕ⊗ I) (Lλ (A1, . . . , Ad)) = Lλ (ϕ(A1), . . . , ϕ(Ad)) ,

we know that if Lλ (A1, . . . , Ad) is invertible then Lλ (ϕ(A1), . . . , ϕ(Ad)) is also invertible. �
Corollary 2.2. If A1, . . . , Ad in B(H) are Hermitian and U is a unitary operator on H then

ΛC(UA1U
∗, . . . , UAdU

∗) = ΛC(A1, . . . , Ad)

and

ΛC
e (UA1U

∗, . . . , UAdU
∗) = ΛC

e (A1, . . . , Ad).

For many purposes, such as proving that a symmetry in A leads to a symmetry in ΛC(A), we need to 
know that we have complete flexibility in selecting the Γj .

Lemma 2.3. Suppose Γ1, . . . ,Γd form a representation of the Clifford relations in Mr(C) and Γ′
1, . . . ,Γ′

d

form a representation of the Clifford relations in Ms(C). If A1, . . . , Ad are Hermitian elements of unital 
C∗-algebra A then

d ∑
j=1 

(Aj − λj) ⊗ Γj

is invertible if, and only if,

d ∑
j=1 

(Aj − λj) ⊗ Γ′
j

is invertible.

The proof of this lemma is essentially the same as the proof of [4, Lemma 1.2] and is omitted. We need 
also the following lemmas from [4], also generalized to the C∗-algebra setting. Again the proofs are almost 
identical to the matrix case and are omitted. We will denote by O(d) the real-valued orthogonal matrices 
of size d.
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Lemma 2.4. Suppose (A1, . . . , Ad) is a d-tuple of Hermitian elements of unital C∗-algebra A and that U ∈
O(d). Suppose λ ∈ Rd. The d elements

Âj =
∑
s 

ujsAs

are also Hermitian and

λ ∈ ΛC (A1, . . . , Ad) ⇐⇒ Uλ ∈ ΛC(Â1, . . . , Âd).

Theorem 2.5. Suppose (A1, . . . , Ad) are Hermitian elements in the unital C∗-algebra A and that U ∈ O(d). 
Let

Âj =
∑
s 

ujsAs.

If there exists a unitary Q in A such that QÂjQ
∗ = Aj for all j then

λ ∈ ΛC (A1, . . . , Ad) ⇐⇒ Uλ ∈ ΛC (A1, . . . , Ad) .

3. The commuting and essentially commuting cases

We know that a single operator’s spectrum can look very different in the infinite-dimensional case when 
compared with the spectrum of a finite-dimensional counterpart. In the finite-dimensional case, any operator 
(or matrix) T will have finite spectrum. In contrast, in infinite dimensions we can get any nonempty closed 
and bounded subset of the complex plane. This phenomenon will give us our first examples where the 
Clifford spectrum looks different from how things looked in finite dimensions [12,31].

In the case d = 2 the Clifford spectrum is a minor variation on the ordinary spectrum. With the standard 
Γ matrices, as in Eq. (1.1), the spectral localizer is

L(x,y)(A1, A2) =
[

0 A1 − iA2 − (x− iy)I
A1 + iA2 − (x + iy)I 0

]
.

This tells us immediately that (x, y) ∈ ΛC(A1, A2) exactly when x + iy is in the ordinary spectrum of 
A1 + iA2. For example, we can have A1 + iA2 be the bilateral shift and so have an example where

ΛC(A1, A2) = T 1. (3.1)

In finite dimensions, we have conjectured [4, §8] that one-dimensional manifolds cannot arise as the 
Clifford spectrum of three matrices. In infinite dimensions, we can get the circle as the Clifford spectrum 
of three operators with commutative and noncommutative examples.

Lemma 3.1. If A1, . . . , Ad are pair-wise commuting Hermitian elements of a unital C∗-algebra A then the 
Clifford spectrum of A = (A1, . . . , Ad) equals the standard joint spectrum.

Proof. Because of spectral permanence and Corollary 2.2, we can assume that A = C(X) for some compact 
Hausdorff space and that Aj = fj for some continuous fj : X → R. In this case, we can work pointwise and 
we find

Lλ(A) = g : X → M2�d/2�(C)
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where

g(x) =
d ∑

j=1 
(fj(x) − λj)Γj .

An easy calculation shows that, for scalars αj ,

σ
(∑

αjΓj

)
=
{
±
√∑

α2
j

}
.

Thus g is singular only when there is a point x0 in X such that fj(x0) = λj for all j. Thus the Clifford 
spectrum is just the joint spectrum. �
Example 3.2. If X is a compact nonempty subset of Rd then there is a commutative example of d Hermitian 
operators on separable Hilbert space whose Clifford spectrum equals X. Notice that X is metrizable so 
C(X) is separable and so can be represented on a separable Hilbert space.

Theorem 3.3. Suppose A1, . . . , Ad are Hermitian elements of a unital C∗-algebra A and that 1 ≤ r < d. If 
Aj commutes with Ak whenever j ≤ r and k > r then

ΛC(A1, · · · , Ad) ⊆ ΛC(A1, · · · , Ar) × ΛC(Ar+1, · · · , Ad).

Proof. We always have

(Lλ(A1, · · · , Ad))2 =
∑

(Aj − λj)2 ⊗ I +
∑
j<k

[Aj , Ak] ⊗ ΓjΓk (3.2)

but with the given assumptions many commutators vanish. Here we obtain

(Lλ(A1, · · · , Ad))2 =
d ∑

j=1 
(Aj − λj)2 ⊗ I +

∑
j<k≤r

[Aj , Ak] ⊗ ΓjΓk +
∑

r<j<k

[Aj , Ak] ⊗ ΓjΓk

which implies

(Lλ(A1, · · · , Ad))2 =
(
L(λ1,...,λr)(A1, · · · , Ar)

)2 +
(
L(λr+1,...,λd)(Ar+1, · · · , Ad)

)2
. (3.3)

If (λ1, . . . , λr) / ∈ ΛC(A1, · · · , Ar) then there is a positive a such that

a ≤
(
L(λ1,...,λr)(A1, · · · , Ar)

)2
.

We always have

0 ≤
(
L(λr+1,...,λd)(Ar+1, · · · , Ad)

)2
and so

a ≤ (Lλ(A1, · · · , Ad))2 .

Thus

(λ1, . . . , λr) / ∈ ΛC(A1, · · · , Ar) =⇒ (λ1, . . . , λd) / ∈ ΛC(A1, · · · , Ad).
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By symmetry,

(λr+1, . . . , λd) / ∈ ΛC(Ar+1, · · · , Ad) =⇒ (λ1, . . . , λd) / ∈ ΛC(A1, · · · , Ad). �
Notice that the reverse inclusion in Theorem 3.3 is already false in the case where all the Aj commute. 

We do get equality in a simple special case.

Theorem 3.4. Suppose A1, . . . , Ad−1 are Hermitian elements of a unital C∗-algebra A. For any real scalar 
α we have

ΛC(A1, · · · , Ad−1, αI) = ΛC(A1, · · · , Ad−1) × {α}.

Proof. Equation (3.3) here becomes

(Lλ(A1, · · · , Ad−1, αI))2 =
(
L(λ1,...,λd−1)(A1, · · · , Ad−1)

)2 + (α− λd)2 I

and the result follows. �
The following provides more evidence to support two conjectures from [4], that when the Clifford spectrum 

of a d-tuple of n-by-n matrices is nonempty, and that when it is finite, it must have cardinality at most n.

Theorem 3.5. If A1, A2 and A3 are n-by-n Hermitian matrices and A1 commutes with both A2 and A3 then 
the Clifford spectrum of (A1, A2, A3) is a set containing at least one point and at most n points.

Proof. First we look at the special case where the first matrix is scalar. Here Theorem 3.4 tells us that 
ΛC(αI,A2, A3) equals {α} × σ(A2 + iA3) which is nonempty and can have no more than n points.

In the general case, let α1, . . . , αr denote the distinct eigenvalues of A1. We can conjugate all the matrices 
by a unitary to ensure that

A1 =

⎡⎢⎣ α1I
. . .

αrI

⎤⎥⎦ .
The fact that the other matrices commute with A1 forces them to be block diagonal,

A2 =

⎡⎢⎣B1
. . .

Br

⎤⎥⎦ , A3 =

⎡⎢⎣C1
. . .

Cr

⎤⎥⎦ .
Therefore

ΛC(A1, A2, A3) =
r⋃

j=1
ΛC(αjI,Bj , Cj)

and the result follows. �
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4. Singular values in infinite dimensions

The spectrum of a matrix is generally less informative when that matrix is not normal. In essence, this is 
why we cannot build as wide-ranging functional calculus in the nonnormal case as in the normal case. Some 
additional information can be found in the pseudospectrum of a nonnormal matrix. The pseudospectrum 
[32] of a square matrix X is based on look formally at the function

α �→
∥∥∥(X − αI)−1

∥∥∥−1
(4.1)

which takes on a gradation of values for α ∈ C, including 0 by default when X − α is not invertible. This 
function can be seen as the pseudospectrum, but traditionally one looked at the inverse image of [0, ε) and 
called that the ε-pseudospectrum.

In applied math, the pseudospectrum is only defined for a single, typically non-normal, square matrix. 
One can easily translate this into a theory applying to two Hermitian matrices by considering X = A1+iA2. 
The norm in Eq. (4.1) can be interpreted in many ways. Here we are only interested in the operator norm. We 
will find it more convenient to compute ‖X−1‖−1 as the smallest singular value of a matrix. Various papers 
have looked at the pseudospectrum of a single nonnormal operator on separable Hilbert space, including 
[2,16,18] in operator theory and [20] in physics.

We need a replacement for the smallest singular value of a non-square matrix that works for a bounded 
linear operator T : H1 → H2. For now, we are content to deal with the bounded linear operators on 
separable Hilbert space. In the finite-dimensional case, one characterization of the smallest singular value 
is the minimum value of ‖Tv‖ as v ranges over all unit vectors. We take this as a definition in the infinite-
dimensional case, except we use infimum,

smin(T ) = inf
‖v‖=1

‖Tv‖.

In the special case of a compact operator, there is a spectral decomposition [15] and so all singular values 
are defined. We need only the smallest, and of course the largest since we are working with the spectral 
norm.

The following lemma allows us to extend the definition of smin to normal elements of a C∗-algebra. We 
can thus extend the definition of the Clifford pseudospectrum for the C∗-algebra setting. Before we make 
that definition we present some basic results about smin of operators. We claim no originality, but could not 
find the exact results we needed in the literature.

Lemma 4.1. If T : H1 → H2 is invertible, then

smin(T ) = ‖T−1‖−1.

Proof. By homogeneity we can compute smin(T ) as

smin(T ) = inf
v �=0

‖Tv‖
‖v‖ 

.

If Tv = w then (
‖Tv‖
‖v‖

)−1

=
∥∥T−1w

∥∥
‖w‖

and the result now follows. �
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Lemma 4.2. Suppose that T : H → H is a bounded linear operator. If T is normal, then

smin(T ) = min
{
|λ| 
∣∣∣λ ∈ σ(T )

}
. (4.2)

Proof. We know

inf
‖v‖=1

‖Tv‖ = inf
‖v‖=1

‖(T ∗T )− 1
2 v‖ = dist(0, σ((T ∗T )− 1

2 )).

On the other hand, applying to spectral mapping theorem to the normal operator T and continuous function 
|λ| we find

σ((T ∗T )− 1
2 ) = {|λ| : λ ∈ σ(T )}

and the result follows. �
Lemma 4.3. Suppose S, T : H1 → H2 are both bounded linear operators, then

|smin(S) − smin(T )| ≤ ‖S − T‖ .

Proof. Let ε > 0 be given. Then there is a unit vector v so that

‖Tv‖ ≤ smin(T ) + ε.

Then

smin(S) ≤ ‖Sv‖ ≤ ‖Tv‖ + ‖(S − T )v‖ ≤ smin(T ) + ε + ‖S − T‖

proving

smin(S) − smin(T ) ≤ ‖S − T‖ + ε.

As this is true for all ε > 0, we have shown

smin(S) − smin(T ) ≤ ‖S − T‖.

We are done, by symmetry. �
Remark 4.4. Unlike the case in finite dimensions, smin(T ) �= 0 does not always imply T is invertible. However, 
when T ∗ = T it is true that smin(T ) �= 0 if and only if T−1 exists.

Lemma 4.5. If T : H1 → H2 and S : H2 → H3 are bounded linear operators then

smin(ST ) ≥ smin(S)smin(T )

Proof. Recall that

smin(T ) = inf
v �=0

‖Tv‖
‖v‖ 

.

If T has no kernel then, for every nonzero v, we have
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‖STv‖
‖v‖ 

= ‖STv‖
‖Tv‖ 

‖Tv‖
‖v‖ 

≥ smin(S)smin(T )

so

smin(ST ) ≥ smin(S)smin(T ).

If T has a kernel then ST has a kernel so both smin(ST ) and smin(T ) are zero and we are done for trivial 
reasons. �

One might think that T and T ∗ and [
0 T ∗

T 0

]

all have the same smin. After all, this is true in the finite-dimensional case. However, if we let T be the 
forward shift, then smin(T ) = 1 since ‖Tv‖ = ‖v‖ for all v (that is, T is an isometry). In contrast, there is 
a unit vector v so that the backwards shift sends v so zero, so that ‖T ∗v‖ = 0. Thus also[

0 T ∗

T 0

][
0
v

]
=
[

0
0

]

so we can conclude

smin

[
0 T ∗

T 0

]
= smin(T ∗) = 0.

Finally, notice that 
√
T ∗T = I while 

√
TT ∗ has a kernel, so

smin (|T ∗|) �= smin (|T |)

in infinite dimensions.
For two Hilbert spaces Hi, i = 1, 2, let L(H1,H2) denote the set of all bounded linear operators from H1

to H2. Recall that for T ∈ L(H1,H2), |T | ∈ L(H1) denotes the modulus of T , that is the unique positive 
semi-definite operator so that |T |2 = T ∗T and ker(T ) = ker(|T |).

Lemma 4.6. If T : H1 → H2 is a bounded linear operator then

smin(T ) = smin(|T |) =
√
smin(T ∗T ).

Proof. Since ‖Tv‖ = ‖ |T |v ‖ for all v ∈ H1, the consequence that smin(T ) = smin(|T |) is straightforward. 
The equality of smin(|T |) with 

√
smin(T ∗T ) follows from Lemma 4.2 and the spectral mapping theorem. �

Definition 4.7. Suppose A1, . . . , Ad are Hermitian elements of a unital C∗-algebra A. The Clifford pseu-
dospectrum for A = (A1, . . . , Ad) is the function λ �→ μC

λ(A) where

μC
λ(A) = smin (Lλ(A)) .

Here we use Equation (4.2) to define smin of a normal element, here the spectral localizer, in a C∗-algebra.
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Once again, we can use the argument given in [4, Lemma 1.2] to see that μC
λ(A) does not depend on the 

Clifford representation used to form the spectral localizer. Notice that the Clifford spectrum is the null-set 
of the Clifford pseudospectrum,

ΛC(A) =
{
λ ∈ Rd

∣∣μC
λ(A) = 0

}
.

We can now extend some of the result on Clifford spectrum and pseudospectrum that have been previously 
worked out in the case of finite matrices [6,23]. Theorem 4.8 is a generalization of Lemma 2.3 of [28]. That 
result handles one general operator, or equivalently two Hermitian operators.

Theorem 4.8. Suppose A1, . . . , Ad are Hermitian elements of a unital C∗-algebra A. The Clifford pseudospec-
trum of A is Lipschitz, specifically with∣∣μC

λ (A1, . . . , Ad) − μC
ν (A1, . . . , Ad)

∣∣ ≤ ‖λ− ν‖ (4.3)

where the norm is taken to be the Euclidean norm on Rn. Moreover∣∣μC
λ (A) − ‖λ‖

∣∣ ≤ ‖L0(A)‖ . (4.4)

Proof. These statements all follow from the fact that smin(A) is Lipschitz in the operator norm (Lemma 4.3). 
This result is a generalization of results in Section 7 of [23], and is proven by related methods. The essential 
calculations are

σ (L0 (λ1I, · · · , λdI)) = {‖λ‖ ,−‖λ‖}

and its corollary

‖L0 (λ1I, · · · , λdI)‖ = ‖λ‖ .

For (4.3) note that

Lλ (A1, · · · , Ad) − Lν (A1, · · · , Ad) = L0 ((ν1 − λ1)I, · · · , (νd − λd)I)

which implies that

‖Lλ (A1, · · · , Ad) − Lν (A1, · · · , Ad)‖ = ‖λ− ν‖.

For (4.4), we know that

smin (L0 (λ1I, · · · , λdI)) = ‖λ‖

and

‖L0 (λ1I, · · · , λdI) + Lλ (A1, · · · , Ad)‖ = ‖L0 (A1, · · · , Ad)‖ . �
Corollary 4.9. The Clifford spectrum for a d-tuple of Hermitian elements of a C∗-algebra is always compact.

Proof. Since Lipschitz implies continuous we get continuity from Equation (4.3). Equation (4.4) tells us 
that then ‖λ‖ > ‖L0(A)‖ we cannot have μC

λ (A) = 0. Therefore the Clifford spectrum of (A1, . . . , Ad) is a 
closed subset of the ball at the origin of radius ‖L0(A1, . . . , Ad)‖. �
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5. Other forms of multivariable pseudospectrum

5.1. The quadratic pseudospectrum and more

There are many ways to define a pseudospectrum for A = (A1, . . . , Ad) that are Hermitian. If these are 
operators on Hilbert space H, Mumford [26] suggests associating to λ the number

min
{

max ‖Ajv − λjv‖
∣∣∣ ‖v‖ = 1 and Ev[Aj ] = λj for all j

}
(5.1)

where Ev[Aj ] = 〈Ajv,v〉 is the expectation for the observable Aj when the system is in state v. This is 
expected [23, §1] to be a very difficult, but important, minimization problem related to joint measurement.

Fortunately, there is a slight modification that can be made to Equation (5.1) that turns it into something 
very computable, as the minimization problem leads to a number equal to the smallest spectral value of a 
Hermitian matrix. The quadratic pseudospectrum [6] is defined as

μQ
λ (A1, . . . , Ad) = min

⎧⎨⎩
√∑

j

‖Ajv − λjv‖2

∣∣∣∣∣∣ ‖v‖ = 1

⎫⎬⎭ . (5.2)

The practical way to compute this is to use the known equality [6]

μQ
λ (A1, . . . , Ad) =

√
smin (Qλ (A)) (5.3)

where

Qλ (A) =
∑
j

(Aj − λj)2 . (5.4)

This can be defined also in the case where the Aj are Hermitian elements in a unital C∗-algebra.
We can also select a bump function g : R → R with 0 ≤ g ≤ 1 and g(0) = 1, some manner of a windowing 

function. Lin [21] looks at

1 − ‖W (A)‖

where

W (A) = g (A1 − λ1) g (A2 − λ2) · · · g (Ad − λd) .

Notice there needs to be some choice of the order in the product. This is related to the windowed LDOS 
[24] that looks at the trace of (W (A))∗ W (A). It can be difficult to compute g (Aj − λj), but it should be 
possible to numerically compute this in settings where some of the matrices are diagonal. For theoretical 
calculations, this can be a practical form of pseudospectrum [21].

Pure mathematicians have been more interested in defining just a joint spectrum from noncommuting 
operators rather than a joint pseudospectrum. One goal of these theories is often to develop a noncommuta-
tive functional calculus and an associated spectral mapping theorem [11,17,34]. The Clifford spectrum fails 
in this regard. Even a simple rescaling of matrices is too much. For applications in topological physics, the 
complicated way the Clifford spectrum varies as we rescale position observables while fixing the Hamiltonian 
is essential, as without it the spectral localizer probably fails to detect any K-theory. This is discussed in 
[4, §3]. See also Figure 8 in [5]. We shall see, in Theorem 5.5, that the quadratic joint spectrum does a little 
better at having a spectral mapping theorem.
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5.2. Relation between the Clifford and quadratic pseudospectra

It is expected that all variations on multivariable operator pseudospectrum will be related somehow. 
Indeed, they should all be equal in the commutative case, and be close when the Aj have small commutators. 
This is known in one case, in that the Clifford and quadratic are of bounded distance apart. That is, we 
know [6] (see Equation (3.2)) that∣∣∣∣∣

(
μC
λ (A)

)2

−
(
μQ
λ (A)

)2
∣∣∣∣∣ ≤∑

j<k

‖[Aj , Ak]‖. (5.5)

It is becoming clear that one cannot make do with a single form of pseudospectrum when studying physical 
systems. The Clifford pseudospectrum is related to K-theory and is finding applications in photonics [3,8], 
acoustics [10], aperiodic structures [14], nonlinear systems [35], and even non-Hermitian systems [7,9,13,22, 
27]. On the other hand, showing that points in the Clifford spectrum correspond to states approximately 
localized in energy and position seems to require using something like Equation (5.5).

We can define the quadratic spectrum as

ΛQ(A) =
{
λ ∈ Rd

∣∣μQ
λ (A) = 0

}
. (5.6)

For Hermitian matrices Aj this equals the set of λ for which there is a joint eigenvector v, nonzero with 
Ajv = λjv. In many cases the quadratic spectrum is empty, and we shall see it is always a subset of the 
Clifford spectrum. Equation (5.5) tells us that if the Aj almost commute then the two pseudospectra are 
close. However, close functions can have null-sets that are very different.

Proposition 5.1. If each Aj is a bounded linear operator on Hilbert space, then λ is in the quadratic spectrum 
of A if and only if there is a joint asymptotic eigenvector {vn} for A, meaning a sequence of unit vectors 
with

(Ajvn − λjvn) → 0.

Proof. To see this, one must interpret the infimum in the definition smin in the equation

(smin (Qλ (A)))
1
2 = smin

⎛⎜⎝
⎡⎢⎣A1 − λ1I

...
Ad − λdI

⎤⎥⎦
⎞⎟⎠ . �

Lemma 5.2. For all d ≥ 1 there is a Clifford representation Γ1, . . . ,Γd and a unit vector u so that 
Γ1u, . . . ,Γdu is an orthonormal set.

Proof. We can prove this by induction. For d = 1 we can set Γ1 = u = [1]. Now assume γ1, . . . , γd−1 are a 
Clifford representation and v is a unit vector with γ1v, . . . , γd−1v being orthonormal. Define Γj = γj ⊗ σx

for j < d and Γd = I⊗σz. These matrices are again a Clifford representation. Next define u = q⊗e1. Then 
Γju = γjq ⊗ e2 except for the last one, which is Γdu = q ⊗ e1. These d vectors are again orthonormal. �
Theorem 5.3. For any Hermitian Aj in a unital C∗-algebra we have

μC
λ(A) ≤ μQ

λ (A)

and, in particular,
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ΛQ(A) ⊆ ΛC(A).

Proof. It suffices to prove this for operators on Hilbert space. For a given ε > 0 we can find a unit vector v
so that ∑

‖Ajv − λjv‖2 ≤
(
μQ
λ (A)

)2
+ ε.

We can use the Γj from the last lemma and so can take u a unit vector so that Γ1u, . . . ,Γdu is an orthonormal 
set. Then the various (Aj − λj)v ⊗ Γju are orthogonal, so

‖Lλ(A) (v ⊗ u)‖2 =
∥∥∥∑(Aj − λj)v ⊗ Γju

∥∥∥2
=
∑

‖(Aj − λj)v‖2

≤
(
μQ
λ (A)

)2
+ ε.

This implies

(smin (Lλ(A)))2 ≤
(
μQ
λ (A)

)2
+ ε.

As this is true for all positive ε the result follows. �
5.3. Symmetry in the quadratic pseudospectrum

There are symmetry properties in the Clifford spectrum that must follow from symmetry properties in 
A [4]. Here we prove the same implication, but for the quadratic case.

Theorem 5.4. Suppose (A1, . . . , Ad) is a d-tuple of Hermitian elements in the unital C∗-algebra A and that 
U ∈ O(d). Suppose λ ∈ Rd. The d elements

Âj =
∑
s 

ujsAs

are also Hermitian, and

μQ
Uλ

(
Â1, . . . , Âd

)
= μQ

λ (A1, . . . , Ad)

and

μC
Uλ

(
Â1, . . . , Âd

)
= μC

λ (A1, . . . , Ad) .

Proof. The elements Âj are Hermitian since the ujk are all real. The statement regarding the Clifford 
pseudospectrum follows from the proof of [4, Theorem 2.1].

We find ∑
j

Â2
j =

∑
r

∑
s 

∑
j

ujrujsArAs

=
∑
r

A2
r

=
∑
j

A2
j .
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Setting

λ̃j =
∑
s 

ujsλs

we next compute ∑
j

λ̃jÂj =
∑
r

∑
s 

∑
j

ujsujrλsAr

=
∑
r

λrAr

=
∑
j

λjAj .

Finally ∑
j

λ̃2
j =

∑
r

∑
s 

∑
j

urjusjλrλs

=
∑
r

λ2
r.

Thus

Qλ̃

(
Â1, . . . , Âd

)
=
∑
j

Â2
j − 2

∑
j

λ̃jÂj +
∑
j

λ̃2
jI

=
∑
j

A2
j − 2

∑
j

λjAj +
∑
j

λjI

= Qλ (A1, . . . , Ad) . �
The spectral mapping theorem fails for the Clifford spectrum outside of [6], the analog of Theorem 5.4. 

Indeed, even for linear transformations applied to three 2-by-2 matrices, there are examples where the 
Clifford spectrum does not follow the linear transformation [12, §4]. Next we show that the quadratic 
spectrum has a less-limited form of spectral mapping theorem. We are very grateful to the anonymous 
referee for pointing this out.

Theorem 5.5. Suppose (A1, . . . , Ad) is a d-tuple of Hermitian elements in the unital C∗-algebra A and that 
W ∈ GLd(R). Suppose λ ∈ Rd. The d elements

Âj =
∑
s 

wjsAs

are also Hermitian and

ΛQ(Â) = WΛQ(A)

and

smin(W )μQ
λ (A) ≤ μQ

Wλ(Â) ≤ ‖W‖μQ
λ (A).
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Proof. For this proof we use the description of the quadratic pseudospectrum in term of joint eigenvectors. 
Let λ̂ = Wλ. If there is unit vector v with

Ajv = λjv

for all j then

Âjv =
∑
s 

wjsAsv

=
∑
s 

wjsλsv

= λ̂sv.

This proves the inclusion ΛQ(Â) ⊇ WΛQ(A). The reverse inclusion follows if we replace W by W−1.
For the quadratic pseudospectrum, we can apply the singular value composition of W and Lemma 2.4 to 

reduce to the case where W is diagonal, with positive diagonal entries s1 ≤ s2 ≤ · · · ≤ sd. Then

∑
j

∥∥∥Âjv − λ̂jv
∥∥∥2 =

∑
j

‖sjAjv − sjλjv‖2

=
∑
j

s2
j ‖Ajv − λjv‖2

≤ s2
d

∑
j

‖Ajv − λjv‖2

which proves

μQ
Wλ

(
Â
)
≤ ‖W‖μQ

λ (A) .

Applying this to W−1 and we find

μQ
Wλ

(
Â
)
≥ smin(W )μQ

λ (A) . �
If Q is a unitary and we let B = (QA1Q

∗, . . . , QA1Q
∗) then Lλ(B) is unitarily equivalent to Lλ(A) and 

Qλ(B) is unitarily equivalent to Qλ(A). Thus we can use Theorem 5.4 to obtain the following theorem.

Theorem 5.6. Suppose (A1, . . . , Ad) are Hermitian elements in the unital C∗-algebra A and that U ∈ O(d). 
Let

Âj =
∑
s 

ujsAs.

If there exists a unitary Q in A such that QÂjQ
∗ = Aj for all j then

μC
Uλ (A1, . . . , Ad) = μC

λ (A1, . . . , Ad)

and

μQ
Uλ (A1, . . . , Ad) = μQ

λ (A1, . . . , Ad) .
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Fig. 6.1. Plotted together the Clifford and quadratic pseudospectrum for (U, Vz), as defined in (6.3),) for various values of z. From 
the top-left to the bottom-right, the values used are z = 1, z = 0.6, z = 0, z = −0.5, z = −1.

6. The C∗-algebra generated by two projections

The universal unital C∗-algebra for the relations that define two orthogonal projections [29] is

C∗(Z2 ∗ Z2) = {f ∈ C([−1, 1],M2) | f(−1) and f(1) are diagonal} . (6.1)

We will now compute both forms of pseudospectrum for this universal pair of projections. The formulas 
derived will come out simpler if we instead think in terms of a universal pair of unitary operators of order 
two. We might see these as two incompatible dichotomous observables.

The generators of C∗(Z2 ∗ Z2) are U and V where

U(z) =
[

1 0
0 −1

]
, V (z) =

[
z

√
1 − z2

√
1 − z2 −z

]
. (6.2)

First we work on the representation corresponding to evaluation at a fixed z. Here the Hilbert space is only 
two-dimensional and the calculations are not too extensive. They are a bit tedious so we utilized a computer 
algebra package here.

Lemma 6.1. Suppose −1 ≤ z ≤ 1. If

U =
[

1 0
0 −1

]
, Vz =

[
z

√
1 − z2

√
1 − z2 −z

]
(6.3)

then
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Fig. 6.2. The Clifford and quadratic pseudospectrum for the universal pair of order-two unitary matrices (U, V ) are plotted together 
here.

μQ
(x,y)(U, Vz) =

√
x2 + y2 + 2 − 2

√
x2 + 2zxy + y2

and

μC
(x,y)(U, Vz) =

√
x2 + y2 + 2 − 2

√
x2 + 2xyz + y2 + 1 − z2.

Proof. We compute the smallest eigenvalue of

Q(x,y)(U, Vz) = (U − xI)2 + (Vz − yI)2 ,

finding that this equals

Q(x,y) =
[
x2 + y2 − 2x− 2zy + 2 −2y

√
1 − z2

−2y
√

1 − z2 x2 + y2 + 2x + 2zy + 2

]
.

This has eigenvalues

x2 + y2 + 2 ± 2
√

x2 + 2zxy + y2.

The smaller of the eigenvalues is with the minus sign. To get to μQ
(x,y)(P,Qz) we apply square root.

For the Clifford pseudospectrum, we need the eigenvalues of[
0 (U − xI) − i (Vz − yI)

(U − xI) + i (Vz − yI) 0

]

which are determined by the singular values of

(U − xI) + i (Vz − yI) .

These are √
x2 + y2 + 2 ± 2

√
x2 + 2xyz + y2 + 1 − z2. �

The pseudospectra of U , Vz for a few values of z are plotted in Fig. 6.1. The pseudospectra of the unversal 
U , V is shown in Fig. 6.2.
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Theorem 6.2. For the universal pair of unitary operators of order two, so U and V as in (6.2) in the universal 
C∗-algebra (6.1), the quadratic pseudospectrum is

μQ
(x,y)(U, V ) = dist

(
(x, y),

{
(−1,−1), (−1, 1), (1,−1), (1, 1)

})
and the Clifford pseudospectrum is

μC
(x,y)(U, V ) =

√
x2 + y2 + 2 − 2

√
x2y2 + x2 + y2 + 1 (6.4)

when −1 ≤ xy ≤ 1, and otherwise

μC
(x,y)(U, V ) = μQ

(x,y)(U, V ).

In particular, the quadratic spectrum is the set of the four points (±1,±1) and the Clifford spectrum is a 
cross, the union of the line segment from (−1,−1) to (1, 1) and the line segment from (−1, 1) to (1,−1).

Proof. First the quadratic case. For each (x, y) we need to minimize

μQ
(x,y)(U, Vz) =

√
x2 + y2 + 2 − 2

√
x2 + 2zxy + y2

over the range −1 ≤ z ≤ 1. This is constant when x = 0 or y = 0 and in the remaining cases, is maximized 
when z = −1 or when z = 1. Since

x2 ± 2xy + y2 = (x± y)2

we find that

μQ
(x,y)(U, V1) =

√
x2 + y2 + 2 − 2

√
x2 + 2xy + y2 =

⎧⎨⎩
√

(x + 1)2 + (y + 1)2 if x + y ≤ 0√
(x− 1)2 + (y − 1)2 if x + y ≥ 0

.

This means μQ
(x,y)(U, V1) is the distance of (x, y) to the set {(−1,−1), (1, 1)}. Similarly μQ

(x,y)(U, V−1) is the 
distance of (x, y) to the set {(1,−1), (−1, 1)}.

Now we look to the Clifford case. For each (x, y) we need to minimize

μC
(x,y)(U, Vz) =

√
x2 + y2 + 2 − 2

√
x2 + 2xyz + y2 + 1 − z2. (6.5)

This will happen at the maximum of

g(z) = x2 + 2xyz + y2 + 1 − z2.

This has derivative

g′(z) = 2xy − 2z

so the maximum value of g seems like it will be at z = z0 where z0 = xy but we need to ensure this is with 
−1 ≤ z ≤ 1. If (x, y) is in the region specified by −1 ≤ xy ≤ 1, a region that includes [−1, 1]× [−1, 1], then 
the value of μC

(x,y)(U, Vz) is found at z0. Substituting z0 for z in Eq. (6.5) yields Eq. (6.4). �
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7. A hemisphere as Clifford spectrum

Example 3.2 tells us we can find essentially any finite-dimensional compact space as the Clifford spec-
trum of some set of commuting Hermitian operators. In the finite-dimensional case we need to introduce 
noncommutativity to get Clifford spectrum in dimension greater than zero. Many papers have examined the 
spaces that one can get from finite matrices, including [1,4,12,31]. With three matrices it is possible to have 
as Clifford spectrum a 2-manifold or a surface with cusps. With four matrices one can get 2-manifolds and 
3-manifold, for example. The simplest example leading to a closed surface is the Pauli matrices themselves 
[19], where

ΛC(σx, σy, σz) = S2.

We find some odd behavior when we modify this example to be infinite-dimensional.
Consider

A1 = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 0 1

1 0 1

1
. . . . . .
. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, A2 = 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −i

i 0 −i

i 0 −i

i
. . . . . .
. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b

0
0

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7.1)

If we set b = 1/2 we have operators that are somewhat like 1
2σx,

1
2σy,

1
2σz. We will find that for this class of 

examples, we get a distorted hemisphere that bifurcates for large b. Indeed, when b is large the spectrum of 
A3 dominates. This is in some way a manifestation of the fact that the K-theory of B(H) is trivial so there 
can be no local index stabilizing the Clifford spectrum.

Notice that A1, A2, A3 are compact perturbations of

K1 = 1
2(S∗ + S), K2 = i 

2(S∗ − S), K3 = 0

where S is the backwards shift operator. Thus the essential Clifford spectrum in this example will not 
depend on b.

Proposition 7.1. For any b ≥ 0, if A1, A2, A3 are defined according to Equation (7.1), then

ΛQ(A1, A2, A3) = T × {0}.

Proof. We need to look for joint asymptotic eigenvectors for A1, A2 and A3, following Proposition 5.1. 
Equivalently, we a looking for a joint asymptotic eigenvector {vn} for A3 and both the forward shift 
S∗ = A1 − iA2 the backward shift S = A1 + iA2. Since A3 has finite spectrum, one can assume without 
loss of generality that all of the vn are in one of the eigenspaces for A3 The approximate point spectrum 
of the forward shift is T so we have proven that the quadratic spectrum is contained in T × {0, b}. If b > 0
then the eigenspace for b is one-dimensional and cannot produce an asymptotic eigenvector for the forward 
shift. Therefore the quadratic spectrum must be a subset of T × {0}.

We can see the other inclusion explicitly. Given |λ| = 1 we can define

vn = (1/
√
n)(0, λ1, λ2, . . . , λn, 0, 0, 0, . . . ).

Each vn is a null-vector for A3 and collectively these form a joint asymptotic eigenvalue for S and S∗ for λ
and λ, respectively. This tells us that that (�(z),�(z), 0) is in the quadratic spectrum of A1, A2, A3. �
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Proposition 7.2. For any b ≥ 0, if A1, A2, A3 are defined according to Equation (7.1), then

ΛC
e (A1, A2, A3) = T × {0}.

Proof. Since the essential spectrum of the unilateral shift is the unit circle we know that

ΛC
e (A1, A2) = T .

Now Theorem 3.4 implies

ΛC
e (A1, A2, A3) = ΛC

e (A1, A2) × {0}

so we are done. �
Example 7.3. For any 0 ≤ b ≤ 2.25, if A1, A2, A3 are defined according to Equation (7.1), then

ΛC(A1, A2, A3).

equals the set of points (x, y, z) that satisfy the equation

−bz4 + 3b2z3 − (3b3 + b)z2 +
(
−b2r2 + 2b2 + b4 + r2) z + b3r2 − b3 + br4 − br2 = 0, (7.2)

subject to the constraints 0 ≤ z ≤ b and r2 ≤ 1, where r2 = x2 + y2. When b = 1 this simplifies to

−z4 + 3z3 − 4z2 + 3z − 1 + r4 = 0.

When b = 0 this can be easily verified using Theorem 3.4. We provide a rigorous proof also for the special 
case b = 1. For the general case, we take an experimental mathematics approach and provide evidence that 
the Clifford spectrum is likely as claimed. We use computer algebra to derive an equality and an inequality 
that together determine part of the Clifford spectrum and then estimate the joint solution numerically.

The cutoff at b = 2.25 was selected to be just past the bifurcation that occurs at b = 2. A supplemental 
video illustrates this bifurcation, while Fig. 7.1 contains three of the frames of that video. For large b the 
spectrum of A3 becomes dominant and so we do not expect anything interesting to show up past b = 2.25.

For any b > 0 it is easy to see that eiθS is unitarily equivalent to S. This implies that

(cos(θ)A1 + sin(θ)A2, cos(θ)A1 − sin(θ)A2, A3)

is unitarily equivalent to A1, A2, A3. We can now apply Theorem 2.5 to conclude that Λ(A1, A2, A3) has 
rotational symmetry in the x-y plane. Thus, we can restrict our attention to the localizer with λ = (x, 0, z)
for x ≥ 0.

The localizer naturally lives in M2(B(H)) but we can identify that with B(H) via the usual shuffling 
of basis elements. Making this identification we can compute L(x,0,z) as follows. Let Eij denote the usual 
two-by-two matrix units, so that σy = −iE12 + iE21 etc. Since

A1 ⊗ σx + A2 ⊗ σy = A1 ⊗ (E12 + E21) + iA2 ⊗ (−E12 + E21)

= (A1 − iA2) ⊗ E12 + (A1 + iA2) ⊗ E21

= S∗ ⊗ E12 + S ⊗E21

we find
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Fig. 7.1. The Clifford spectrum for the three operators in Equation (7.1). b = 1.00 (left); b = 2.00 (center); b = 2.05 (right). A 
supplemental video shows these plots for additional values of b.

A1 ⊗ σx + A2 ⊗ σy =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0 1

1 0 0
0 0 1

1 0 0

0 0
. . .

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore

L(x,0,z) = (A1 − xI) ⊗ σx + A2 ⊗ σy + (A3 − zI) ⊗ σz

works out as

L(x,0,z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b− z −x

−x z − b 1
1 −z −x

−x z 1
1 −z −x

−x z
. . .

. . . . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We already worked out the essential Clifford spectrum so we already know that 0 is in the essential 
spectrum of the spectral localizer. When z = 0, Equation (7.2) becomes r4 − 1 = 0 so we see immediately 
that that points in the essential spectrum T × {0} always satisfy this equation. What is left is to find the 
discrete spectrum, that is, those points λ = (x, 0, z) such that Lλ(A) is Fredholm but not invertible. At such 
points Lλ(A) will have a nontrivial kernel, because the spectral localizer is self-adjoint. Thus, we search for 
values of x and z that lead to null vectors for L(x,0,z).

The calculations in the general case are complicated so now it is time to restrict to the case of b = 1.
We need to discuss a special case. First we deal with x = 0. This makes L(x,0,z) block diagonal, with 

blocks

[1 − z] , 
[
z − 1 1

1 −z

]
, 

[
z 1
1 −z

]
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that have determinants 1 − z, −z2 + z − 1 and −z2 − 1, so only z = 1 leads to L(x,0,z) being singular.
Now assume x ≥ 0. Let us assume that there exists a nonzero vector a = (a1, a2, . . . ) ∈ l2(N) so that 

L(x,0,z)a = 0. We can rescale a so that a1 = 1. This means

(1 − z) − xa2 = 0,

−x + (z − 1)a2 + a3 = 0,

and for n ≥ 2,

a2n−2 − za2n−1 − xa2n = 0,

−xa2n−1 + za2n + a2n+1 = 0.

Thus, for n ≥ 2,

a2n = − z

x
a2n−1 + 1 

x
a2n−2

and

a2n+1 = −za2n + xa2n−1

= −z

(
− z

x
a2n−1 + 1 

x
a2n−2

)
+ xa2n−1

=
(
z2

x 
+ x

)
a2n−1 −

z

x
a2n−2.

If we set

M =
[

1 
x − z

x

− z
x

x2+z2

x 

]

the relation on a is [
a2n

a2n+1

]
= M

[
a2n−2
a2n−1

]
.

We also know

a2 = 1 − z

x 

and

a3 = x + (1 − z)a2

= x + (1 − z)1 − z

x 

so have an initial condition

v0 =
[
a2
a3

]
= 1 

x

[
−z + 1

z2 − 2z + x2 + 1

]
.
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Now let’s pause to take care of the case of z = 1 and x > 0. In that situation, we have

M =
[

1 
x − 1 

x

− 1 
x

x2+1
x 

]

so that

v0 =
[

0
x

]

is not going to be an eigenvector. Thus, the only Clifford spectrum on the line z = 1 is the point (x, 0, z) =
(0, 0, 1) that we found above.

For the general case, we need to know about the eigenvalues of the real symmetric matrix M and see 
that

Tr(M) = x2 + z2 + 1
x 

and det(M) = 1 we find that the eigenvalues of the real symmetric matrix M are

1
2

(
Tr(M) ±

√
(Tr(M))2 − 4

)
.

We get a double real eigenvalue when

x2 + z2 + 1
x 

= 2

but this leads to x = 1 and z = 0 which we have excluded. We get two complex eigenvalues when

x2 + z2 + 1
x 

< 2

which is equivalent to

(x− 1)2 + z2 < 0

and that cannot happen. What we need look at then is where M has two positive eigenvalues, one outside of 
(0, 1) and one inside. The only way to have a square-summable is if the initial vector lands in the eigenspace 
for the eigenvalue closer to 0.

Let us find out when Mv0 is parallel to v0. Since

Mv0 = 1 
x2

[
−z3 + 2z2 − (x2 + 2)z + 1

z4 − 2z3 + (2x2 + 2)z2 − (2x2 + 1)z + x4 + x2

]

we need to solve

−z3 + 2z2 − (x2 + 2)z + 1
−z + 1 

= z4 − 2z3 + (2x2 + 2)z2 − (2x2 + 1)z + x4 + x2

z2 − 2z + x2 + 1 
.

For z �= 1 this is equivalent to
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Fig. 7.2. Plots of e(x, z) = 0 (dark curves) and f(x, z) ≥ 0 (light areas, switched to ≤ above z = b) for b = 1.00, b = 2.00, b = 2.05. 
A supplemental video shows these plots for additional values of b.

−z4 + 3z3 − 4z2 + 3z + x4 − 1
(z − 1)(x2 + (z − 1)2) = 0

so we get the curve e(x, z) = 0 where

e(x, z) = −z4 + 3z3 − 4z2 + 3z + x4 − 1.

What about the associated eigenvalue α? We need to be less than 1. First, we deal with the case where 
z < 1. Here the first coordinate of the initial vector v0 will be positive so α < 1 will happen when

−z + 1
x 

>
−z3 + 2z2 − (x2 + 2)z + 1

x2 .

As x2 is positive this is equivalent to

f(x, z) = z3 − 2z2 + (x2 − x + 2)z + x− 1 > 0.

For z > 1 we need to know when f(x, z) is negative.
We find

∂f

∂z
= 3z2 − 4z + x2 − x + 2 = (x− 1

2)2 + 3(z − 2
3 )2 + 5 

12

is always positive. The plots of the zero-locus of e and f are shown in Fig. 7.2. These seem to cross at 
(x, z) = (0, 1) and (x, z) = (1, 0) and the curve for f = 0 is below the curve for e = 0 between those 
two crossings. If we believe the computer-generated plots then we can conclude that the discrete Clifford 
spectrum is on the curve e(x, z) = 0 restricted to the region 0 ≤ x, z ≤ 1.

We can verify the above claim rigorously, with some uninteresting calculus. We put the rest of the proof 
in Appendix A.

When b �= 1 the polynomials e(x, z) and f(x, z) are trickier. As such, we resorted to using symbolic 
computer algebra for various values of b and numerically plotting the curve e(x, z) = 0 and regions associated 
to f(x, z). While we do not have a fully rigorous proof, we feel this is sufficient to understand this example.
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8. Momentum and position – an unbounded example

We hope to push the idea of joint pseudospectrum into the realm of unbounded operators. Indeed, the 
spectral localizer has been applied to unbounded operators in [30,33] for example. However, the goal has 
typically been to understand a K-theory operation and not to compute the Clifford spectrum. Here we 
consider a classic example, and do not attempt a general theory. The example is a classic interpretation of 
position and momentum.

We will work on the Hilbert space L2(R), and in particular on the subspace S of Schwartz functions, 
where we consider only f for which xmDnf(x) is always bounded. Here we use

D(f)(x) = d 
dx

(f(x))

to denote the standard differential operator. We consider two unbounded operators, P,Q : S → S where 
P = −iD and Q(f)(x) = xf(x). These are both symmetric, but not self-adjoint.

We can consider

Qλ(P,Q) = (P − λ1I)2 + (Q− λ2I)2 : S → S.

and define

μQ
λ (P,Q) =

√
min
‖f‖=1

‖Qλ(P,Q)(f)‖.

The Clifford pseudospectrum is also easy to define, as

μC
λ(P,Q) = min

‖f‖=1
‖Lλ(P,Q)(f)‖

where

Lλ(P,Q) =
[

0 (P − λ1I) − i (Q− λ2I)
(P − λ1I) + i (Q− λ2I) 0

]

is taken to be an operator on S ⊕ S. In [12], this example of Clifford pseudospectrum was computed, with

μC
λ(P,Q) ≡ 0

being the result.
We will need some alternate characterizations of the quadratic pseudospectrum of P and Q, as proven 

in [6] for the matrix case. We can consider

Mλ(P,Q) =
[
P − λ1I

Q− λ2I

]
: S → S ⊕ S.

and can check that

μQ
λ (P,Q) =

√
min
‖f‖=1

∥∥(Mλ(P,Q)(f))∗ (Mλ(P,Q)(f))
∥∥

= min
‖f‖=1

‖Mλ(P,Q)(f)‖

= min
‖f‖=1

√
‖Pf − λ1f‖2 + ‖Qf − λ2f‖2

.
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Since

‖Av − λv‖2 = Δ2
vA + (Ev(A) − λ)2

for any Hermitian operator, we can find lower bounds on the quadratic pseudospectrum by utilizing results 
on lower bounds on the sum of uncertainty. For example, there are lower bounds on Δ2

vA + Δ2
vB in [25]. 

For simplicity, we give a simplification of a proof from [25] and directly prove the following.

Lemma 8.1. If v is a unit vector and A and B are Hermitian operators then

‖Av‖2 + ‖Bv‖2 ≥ |〈i [A,B]v,v〉| .

Proof. We first calculate

‖(A∓ iB)v‖2 = ‖Av‖2 + ‖Bv‖2 ∓ 〈i [A,B]v,v〉

so we have

‖Av‖2 + ‖Bv‖2 = ‖(A∓ iB)v‖2 ± 〈i [A,B]v,v〉 .

An easy consequence is then

‖Av‖2 + ‖Bv‖2 ≥ ±〈i [A,B]v,v〉 . �
Theorem 8.2. For P and Q as above,

μQ
λ (P,Q) = 1

for all λ.

Proof. We start by establishing that μQ
λ (P,Q) is constant. The shift operator f(x) �→ f(x − λ2) gives a 

unitary U that takes S onto S. Since

U∗PU(f(x)) = −iU∗(f ′(x− λ2))

= −if ′(x)

= P (f(x))

and

U∗QU(f(x)) = U∗(xf(x− λ2))

= (x + λ2)f(x)

we find U∗PU = P and U∗QU = Q + λ2. Therefore Q(λ1,λ2)(P,Q) is unitarily equivalent to Q(λ1,0)(P,Q)
and so

μQ
(λ1,λ2)(P,Q) = μQ

(λ1,0)(P,Q).

Likewise, we can use f(x) �→ e2πiλ1xf(x) so set up a unitary that shows
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μQ
(λ1,λ2)(P,Q) = μQ

(0,λ2)(P,Q).

Taken together, these facts prove that the quadratic pseudospectrum is constant.
Since [P,Q] (f) = −if , Lemma 8.1 says

‖Pf‖2 + ‖Qf‖2 ≥ 1.

Therefore μQ
(0)(P,Q) ≥ 1 and so

μQ
λ (P,Q) ≥ 1

Now consider g(x) = e−
1
2x

2 . Clearly

Q2(g)(x) = x2e−
1
2x

2
= x2g(x).

We also find

P 2(g)(x) = P
(
ixe−

1
2x

2
)

= −i
d 
dx

(
ixe−

1
2x

2
)

= d 
dx

(
xe−

1
2x

2
)

= e−
1
2x

2 − x2e−
1
2x

2

= g(x) − x2g(x)

and so find

(
P 2 + Q2) g = g.

Having found an eigenvector Q(0,0)(P,Q) = P 2 + Q2 we have proven

μQ
λ (P,Q) ≤ 1. �
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Appendix A. Calculations for Example 7.3

Here if the rest of the proof for the case b = 1. We can solve for x in terms of z on the e = 0 curve, so

x =
(
z4 − 3z3 + 4z2 − 3z + 1

)1/4
.

which simplifies to

x = |z − 1|
1
2
(
z2 − z + 1

)1/4
.

This substitution into f(x, z) where,

f(x, z) = x2z − x(z − 1) + (z − 1)
(
z2 − z + 1

)
,

leads to the one-variable function

fe(z) = z |z − 1|
(
z2 − z + 1

)1/2 − (z − 1) |z − 1|
1
2
(
z2 − z + 1

)1/4 + (z − 1)
(
z2 − z + 1

)
For z ≤ 1 this becomes

fe(z) = z (1 − z)
(
z2 − z + 1

)1/2 + (1 − z) (1 − z)
1
2
(
z2 − z + 1

)1/4 − (1 − z)
(
z2 − z + 1

)
.

For 0 ≤ z ≤ 1 we have z2 − z + 1 ≤ 1 so

fe(z) ≥ z (1 − z)
(
z2 − z + 1

)1/2 + (1 − z) (1 − z)
1
2
(
z2 − z + 1

)1/2 − (1 − z)
(
z2 − z + 1

) 1
2

=
(
z(1 − z) + (1 − z)(1 − z) 1

2 − (1 − z)
) (

z2 − z + 1
) 1

2

= (1 − z)
(
z + (1 − z) 1

2 − (1 − z)
) (

z2 − z + 1
) 1

2

= (1 − z)
(
2z − 1 + (1 − z) 1

2

) (
z2 − z + 1

) 1
2

≥ 0.

For z ≤ 0 we have z2 − z + 1 ≥ 1 so

fe(z) ≤ z (1 − z)
(
z2 − z + 1

)1/4 + (1 − z) (1 − z)
1
2
(
z2 − z + 1

)1/4 − (1 − z)
(
z2 − z + 1

)
= (1 − z)

(
z
(
z2 − z + 1

)1/4 + (1 − z)
1
2
(
z2 − z + 1

)1/4 − (z2 − z + 1
))

= (1 − z)
(
z2 − z + 1

)1/4 (
z + (1 − z)

1
2 −
(
z2 − z + 1

) 3
4
)

One can see this is at most zero by looking at its derivative.
For z ≥ 1 the formula for fe becomes

fe(z) = z (z − 1)
(
z2 − z + 1

)1/2 − (z − 1) (z − 1)
1
2
(
z2 − z + 1

)1/4 + (z − 1)
(
z2 − z + 1

)
.

Here z2 − z + 1 ≥ 1 so
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fe(z) = (z − 1)
(
z
(
z2 − z + 1

)1/2 − (z − 1)
1
2
(
z2 − z + 1

)1/4 +
(
z2 − z + 1

))
≥ (z − 1)

(
z
(
z2 − z + 1

)1/2 − (z − 1)
1
2
(
z2 − z + 1

)1/2 +
(
z2 − z + 1

) 1
2
)

= (z − 1)
(
z2 − z + 1

)1/2 (
z + 1 − (z − 1)

1
2
)

≥ 0.

Data availability

Scripts to numerically validate Example 7.3 and assist with the calculations in Section 6 are at https://
github.com/acerjan/mult_var_pseudospectrum_in_Cstar_algebras. In addition, there the reader can find 
videos that supplement Figs. 7.1 and 7.2.
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