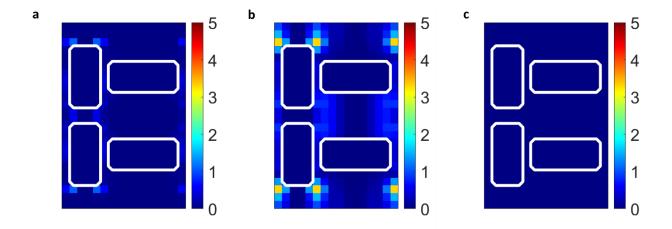
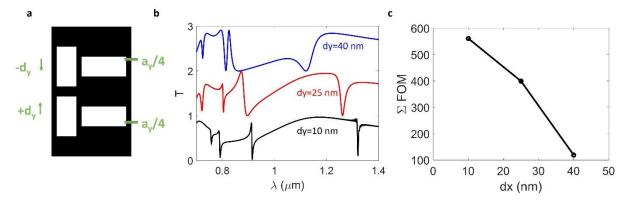
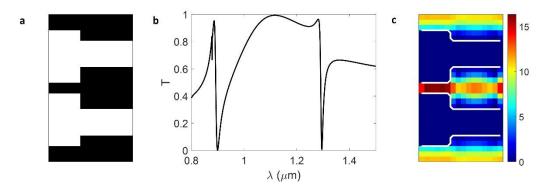
Supporting Information for

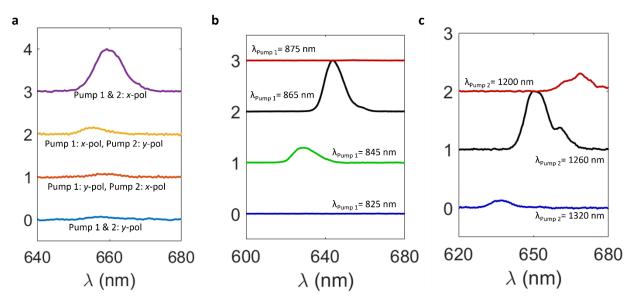

Giant Enhancement of Four-Wave Mixing by Doubly Zone-Folded Nonlocal Metasurfaces

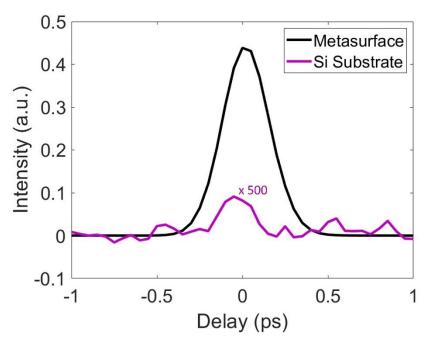
Stephanie C. Malek¹, Tenzin Norden², Chloe F. Doiron¹, Tomás Santiago-Cruz¹, Jaeyeon Yu¹, Alexander Cerjan¹, Prashant Padmanabhan², and Igal Brener^{1*}

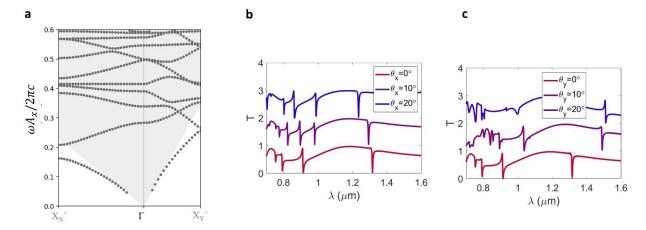

¹Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87123, USA

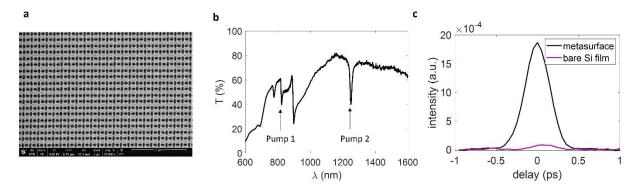
²Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

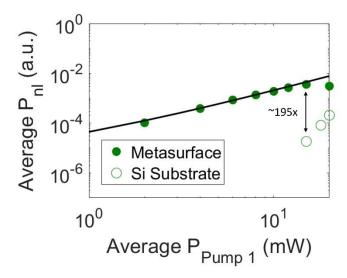

*email: ibrener@sandia.gov

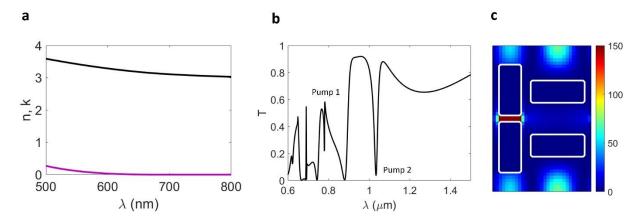

Figure S1: Calculated field overlap figure of merit $|E(\omega_1)E(\omega_2)^*E(\omega_1)|$ for design in Figure 2 of Main Text for field components with minimal contribution to enhancing four-wave mixing. (a) E_Y excited by x-polarized incident light (b) E_Z excited by x-polarized light (c) E_X excited by y-polarized light.


Figure S2: Selection of Q-factor and field overlap through control of y-direction dimerizing perturbation. (a) Definition of magnitude of y-direction dimerizing perturbation d_y (d_y =25 nm in example schematic). (b) Simulated transmission spectra for three different values of d_y . (c) Calculated sum of field overlap figure of merit $FOM = |E(\omega_1)E(\omega_2)^*E(\omega_1)|$ in the silicon for three different values of d_y .


Figure S3: Simulation of metasurface in Fig. 4 accounting for fabrication imperfections that joins adjacent nanovoids in x-direction. (a) Simulated spectra for x-polarized incident light. (b) Calculated field overlap figure of merit $|E(\omega_1)E(\omega_2)^*E(\omega_1)|$.


Figure S4: Additional nonlinear spectral measurements of device in Fig. 5. (a) Expanded spectral measurements from Fig. 4c of main text at 0 ps time delay including measurements where only one pump is resonant with its respective q-BIC (x-polarized). (b) Spectral measurements with varied Pump 1 wavelength and $\lambda_{\text{Pump 2}}$ =1290 nm. Both pumps are x-polarized and 2 mW average power. (c) Spectral measurements with varied Pump 1 wavelength and $\lambda_{\text{Pump 1}}$ =865 nm. Both pumps are x-polarized and 2 mW average power. All measurements normalized to maximum signal in plot and offset by 1 for visual clarity.


Figure S5: Additional confirmation of ~2400x enhancement of FWM from device in Fig. 4 of the main text. Measured intensity as a function of time delay between pump beams on metasurface (Black curve) and unpatterned si-on-glass substrate (purple curve, magnified by a factor of 500 for visibility) measured at a different spot on the metasurface than Fig. 4. Power of both pumps is 10 mW.


Figure S6: Calculated angular dispersion of device in Fig. 4 of the Main Text. (a) Calculated band structure. (b-c) Simulated transmission spectra as a function of incident angle for light that is off-normal in the x- direction (b) and y- direction (c).

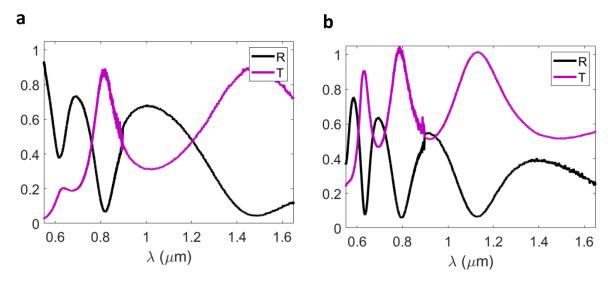

Figure S7: Measured device with improved fabrication and a higher Q-factor for Pump 2 (Q_{Pump1}~110, Q_{Pump2}~170) but only ~23x enhancement of four-wave mixing when pumped on resonance. (a) Scanning electron micrograph. (b) Measured linear spectrum for *y*-polarized incident light. (c) Measured intensity as a function of time delay between pump beams on metasurface (Black curve) and unpatterned Si-on-glass substrate (purple curve). Power of both pumps is 2 mW.

Figure S8: Nonlinear signal as a function of Pump 1 of the device in Figure 4 of main text. Pump 2 is *y*-polarized and 2 mW.

Figure S9: Design of silicon rich nitride metasurface in Figure 5 of Main Text. (a) Measured optical constants. (b) Simulated spectrum of metasurface for *x*-polarized incident light with lattice constants a_x =300 nm and a_x =450 nm and *y*-direction spacing perturbation d_y =24 nm. (c) Calculated $E_x(\omega_1)$ $E_x(\omega_2)^*$ $E_x(\omega_1)$ in quadromer lattice (with apertures etched into the thin film outlined in white) as a figure of merit for enhancement of four-wave mixing following nonlinear polarization.

Figure S10: Optical characterization of unpatterned \sim 200 nm Si-on-glass and \sim 440 nm SRN-on-glass substrates used in Fig. 4 and 5 of the Main Text. (a-b) Linear reflection and transmission spectra for (a) silicon and (b) SRN.