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California 94305, USA

(Received 29 September 2016; accepted 15 January 2017; published online 2 February 2017)

We introduce a finite-difference frequency-domain algorithm for coupled acousto-
optic simulations. First-principles acousto-optic simulation in time domain has been
challenging due to the fact that the acoustic and optical frequencies differ by many
orders of magnitude. We bypass this difficulty by formulating the interactions between
the optical and acoustic waves rigorously as a system of coupled nonlinear equations
in frequency domain. This approach is particularly suited for on-chip devices that are
based on a variety of acousto-optic interactions such as the stimulated Brillouin scatter-
ing. We validate our algorithm by simulating a stimulated Brillouin scattering process
in a suspended waveguide structure and find excellent agreement with coupled-mode
theory. We further provide an example of a simulation for a compact on-chip resonator
device that greatly enhances the effect of stimulated Brillouin scattering. Our algo-
rithm should facilitate the design of nanophotonic on-chip devices for the harnessing
of photon-phonon interactions. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4975002]

I. INTRODUCTION

In recent years, there has been increasing interest in acousto-optic devices, with an emphasis
on the design of on-chip structures to efficiently harness various photon and phonon interaction
mechanisms such as the stimulated Brillouin scattering (SBS).1–4 As SBS yields an extremely strong
nonlinear interaction with narrow resonances, it has found applications in many important areas of
optics and acoustics.1–3 Traditionally, SBS has been studied extensively in fiber-optic devices in order
to inhibit undesired nonlinear effects induced by SBS.1–4 More recently, SBS has been tailored for
micron-scale on-chip devices,2,3,5–10 where it is considered to be an attractive candidate in the creation
of lasers with ultra-narrow bandwidths,11–14 gigahertz frequency combs,15,16 slow light,17 and on-chip
signal processing devices such as the microwave photonic filter18,19 and optical isolators.20–23

Given the wide range of devices that can harness SBS, it is important to develop general numer-
ical techniques that can facilitate the device design process. However, direct simulations of these
devices face an intrinsic challenge that arises from the enormous time scale difference between opti-
cal and acoustic waves, effectively rendering tradition time-domain simulation methods intractable.
For instance, a typical optical wave has a frequency of around 200 THz, whereas SBS acoustic waves
usually have frequencies of around 5 to 10 GHz. Thus, even though in principle, one could simulate
acousto-optic interactions with a standard first-principles time-domain simulation technique such as
the finite-difference time-domain (FDTD) algorithm,24,25 a single acoustic wave cycle corresponds
to around 105 optical wave cycles, and resolving an SBS resonance with a linewidth of around 1
MHz would require at least 109 optical cycles. Thus, accurately treating photon-phonon interactions
in time-domain simulations becomes prohibitively numerically expensive. As such, when design-
ing fiber-optic and on-chip acousto-optic devices, researchers typically adopt a mode-expansion
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technique, which calculates the optical and acoustic modes independently and then treats the
acousto-optic coupling perturbatively using the coupled mode theory.5–13,16,18–21 Unfortunately, the
application of coupled mode theory is not exact and becomes difficult for complex geometries, which
may support a large number of interacting modes. Therefore, in order to accurately and realisti-
cally perform first-principles simulations of a general class of acousto-optic devices, there is an
urgent need to develop a computational algorithm to efficiently and exactly simulate the interactions
between optical and acoustic waves.

In this paper, we introduce an acousto-optic finite-difference frequency-domain (FDFD) tech-
nique in order to perform first-principles calculations of the photon-phonon interactions in acousto-
optic devices. In the frequency domain, the physics of the acousto-optic system can be rigorously
formulated as a system of coupled nonlinear equations, whose solution provides the steady-state
dynamics of the acousto-optic systems. With such a frequency-domain solver, we bypass the need to
compute field values at every time step and can therefore directly simulate a general class of acousto-
optic devices without the limitations in time-domain simulations as imposed by the vastly differing
time scales between optical and acoustic waves.

The remainder of this manuscript is structured as follows. In Section II, we review the physics of
optical and acoustic waves along with their interactions. In Section III, we provide a general formalism
of the acousto-optic FDFD algorithm based on the wave equations in Section II. In Section IV, we
demonstrate two numerical examples of the acousto-optic FDFD algorithm. The first example is a
verification of this algorithm, where we observe excellent agreement between its solutions and those
of the coupled mode theory. The second example is a simulation of a realistic on-chip SBS resonator,
where we capture features that are prominent to the SBS process. In Section V, we provide a summary
of our work as well as a general discussion regarding to the application of our algorithm.

II. OPTICAL AND ACOUSTIC WAVE EQUATIONS

To start, we first briefly review the physics of Maxwell’s equations26–29 and the acoustic
wave equation in the context of acousto-optic interactions.8,25,30,31 In frequency domain, Maxwell’s
equations for the electric field E(ω) at frequency ω can be written as4,32

∇ × µ0
−1∇ × E(ω) − ω2ε0εrE(ω) − ω2P(ω)=−iωJ(ω), (1)

in which the spatial dependence of the source, field, and material parameters are implicitly defined.
εr is the relative permittivity at frequency ω. J (ω) is the external current density, and P (ω) is the
nonlinear polarization density component at frequency ω.

The frequency-domain solution of the acoustic wave equation can be formulated in a similar
manner. An acoustic (mechanical) displacement field Ũ (t) at frequency Ω can be expressed as

Ũ(t)=UeiΩt + U∗e−iΩt , (2)

where U is the complex amplitude of the displacement field. For such a wave, the fundamental
equation of motion for U at frequency Ω can be expressed in the component form,8,30

ρΩ2Ui +
∑
jkl

∂j

(
cijkl + iΩηijkl

)
∂kUl + Fi = 0, (3)

where ρ is the material density, c
−

is the stiffness tensor, η is the viscosity tensor, and F is the force

acting on the acoustic wave. The frequency dependence of U i and F i is implicit since we are solving
for the steady-state response at a single acoustic frequency Ω. By adopting standard tensor-vector
contraction notations, Eq. (3) can be written more compactly as30

ρΩ2U + ∇·
(
c
−
+ iΩη

)
:∇ ⊗ U + F= 0, (4)

where ∇ ⊗ U describes the tensor derivative of U as

∇ ⊗ U= *.
,

∂xUx ∂xUy ∂xUz

∂yUx ∂yUy ∂yUz

∂zUx ∂zUy ∂zUz

+/
-

, (5)
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the operator describes a rank four tensor acting on a rank two tensor. For instance,[
c
−

:∇ ⊗ U
]

ij =
∑

kl

cijkl∂kUl, (6)

and ∇ · ( ) describes the divergence operator acting on a rank two tensor.
In order to treat acousto-optic phenomena, we need to incorporate both the nonlinear polarization

density P (ω) and the force density F into Eqs. (1) and (4). In particular, one needs to include the
optical and acoustic wave coupling both in the bulk of a material and at its boundaries.7,8,33 In what
follows, we show that one can explicitly treat the effects of P (ω) and F by developing a system of
nonlinear equations that can be solved self-consistently.

When an acoustic wave Ũ (t) with the form of Eq. (2) exists in optical media, the nonlinear
polarization density P̃ (t) has two contributions (we ignore the moving polarization effect because it
is a much weaker effect as noted in Ref. 8),

P̃(t)= P̃(b, PE)(t) + P̃(s,MB)(t), (7)

where P̃(b,PE) (t) is the bulk polarization density from photo-elasticity (PE) and P̃(s,MB) (t) is the
surface polarization density caused by moving boundaries (MBs). Subsequently, a superscript of (b)
denotes a term acting on the bulk, whereas a superscript of (s) denotes a term acting on a surface.
The photo-elastic effect can be described by an electromagnetic susceptibility χ(PE)

ij (t) caused by the

acoustic wave,8

χ(PE)
ij (t)= εr

2
∑

kl

pijkl∂k

(
Ule

iΩt + U∗l e−iΩt
)
, (8)

or written as a contracted tensor,

χ(PE)(t)= εr
2p
−

:∇ ⊗
(
UeiΩt + U∗e−iΩt

)
, (9)

where p
−

is the rank four photo-elastic tensor. The polarization density induced by χ(PE) (t) can be

described as

P̃(t)= ε0 χ
(PE)(t)E(t), (10)

which can be expressed in the frequency domain as

P(b, PE)(ω)= ε0εr
2
[(

p
−

:∇ ⊗ U
)
E(ω −Ω) +

(
p
−

:∇ ⊗ U∗
)
E(ω +Ω)

]
. (11)

By inserting Eq. (11) into Eq. (1), we notice that the acoustic field density U causes the interaction
between an optical field at frequency ω with its neighboring sideband frequency components ω ±Ω,
which is a general property of acousto-optic interactions. Therefore, in the presence of an acoustic
wave, we need to consider a time-domain electric field Ẽ (t) of the general form32

Ẽ(t)=
∑

m

Emeiωmt + c.c., (12)

where Em is the complex field component at frequency ωm, and the neighboring frequencies are
separated by Ω, i.e., ωm+1 − ωm =Ω. For an optical wave equation at frequency ωm, the exact form
of the polarization density due to photo-elasticity can be expressed as

P(b, PE)(ωm)= ε0εr
2
[(

p
−

:∇ ⊗ U
)
Em−1 +

(
p
−

:∇ ⊗ U∗
)
Em+1

]
. (13)

Next, we will discuss the polarization density induced by the movement of the boundary due to
the acoustic field. When the acoustic field component normal to the surface causes the deformation
of a structure as illustrated in Fig. 1, the electric field perturbation at the surface can be described by
Ref. 8,

∆E= (ε−1
b − ε

−1
a )ε−1

0 n̂(n̂ · D), (14a)

∆D= (εa − εb)ε0(−n̂ × n̂ × E), (14b)
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FIG. 1. Schematics of the deformed waveguide geometry. The core has a relative permittivity of εa, and it is surrounded by
the cladding with a relative permittivity of εb.

where the E and D fields are related by the constitutive relationship D= ε0εrE. By treating ∆E
and ∆D as perturbations caused by the acoustic field component normal to the material boundary,
the polarization density on the surface at frequency ωm as induced by moving boundaries can be
calculated as

P(s, MB)(ωn)= ε0(εa − εb)n̂ ×
[
−n̂ × Em−1

(
U · σs) − n̂ × Em+1

(
U∗ · σs)]

+ ε0(ε−1
b − ε

−1
a )n̂

[
n̂ · (εrEm−1)

(
U · σs) + n̂ · (εrEm+1)

(
U∗ · σs)] , (15)

where we have defined σs as a one-dimensional delta function that lies on the material surface
multiplied by the surface normal unit vector n̂. By substituting Eqs. (12), (13), and (15) into Eq. (1),
we find the general form of an optical wave equation at frequency ωm as

∇× µ0
−1∇ × Em − ωm

2ε0εrEm

−ωm
2ε0εr

2
[(

p
−

:∇ ⊗ U
)
Em−1 +

(
p
−

:∇ ⊗ U∗
)
Em+1

]

−ωm
2ε0(εa − εb)n̂ ×

[
−n̂ × Em−1

(
U · σs) − n̂ × Em+1

(
U∗ · σs)]

−ωm
2ε0(ε−1

b − ε
−1
a )n̂

[
n̂ · (εrEm−1)

(
U · σs) + n̂ · (εrEm+1)

(
U∗ · σs)]

=− iωmJm(ωm). (16)

Having provided the general treatment for the effects of the acoustic wave on optical
waves, we now describe how optical waves can produce forces that excite acoustic waves. In
an acousto-optic medium, the optical waves in Eq. (12) can provide three types of mechanical
forces,

F=F(b,ES) + F(s,ES) + F(s,MB), (17)

where F(b,ES) is the bulk electrostrictive (ES) force, F(s,ES) is the surface electrostrictive force, and
F(s,MB) is the surface force caused by radiation pressure (here, the superscript “MB” stands for “moving
boundary”). The bulk and surface electrostrictive forces can be described in the component form,
respectively, as8

F(b,ES)
l =−ε0ε

2
r

∑
ijk

∂k
*
,
pijkl

∑
m

(
E∗m

)
i (Em+1)j

+
-
, (18a)

F(s,ES)
l = ε0ε

2
r

∑
ijk

σs
k
*
,
pijkl

∑
m

(
E∗m

)
i (Em+1)j

+
-
. (18b)

With the tensor contraction notation, we can express, in the vectorial form, the sum of the forces as

F(b,ES) + F(s,ES) = ε0ε
2
r
(
σs − ∇

)
· p
−

:
∑

m

E∗m ⊗ Em+1. (19)
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For the radiation pressure force at the boundary, we use the analysis and results as derived in
Ref. 8 to find

F(s,MB) = σs

ε0(εa − εb)

∑
m

(
n̂ × E∗m

)
(n̂ × Em+1) − ε0(ε−1

b − ε
−1
a )

∑
m

(
n̂ · εrE∗m

)
(n̂ · εrEm+1)


.

(20)

We can now obtain a general acoustic wave equation with the interaction with optical waves by
substituting Eqs. (20) and (19) into Eq. (3) and get

ρΩ2U+∇ ·
(
c
−
+ iΩη

−

)
:∇ ⊗ U

+ ε0ε
2
r (σs − ∇) · p

−
:
∑

m

E∗m ⊗ Em+1

+ σs

ε0(εa − εb)

∑
m

(
n̂ × E∗m

)
(n̂ × Em+1) − ε0(ε−1

b − ε
−1
a )

∑
m

(
n̂ · εrE∗m

)
(n̂ · εrEm+1)


=−Fext , (21)

where we included an external force, Fext , to capture any other driving forces that are non-optical.
Together, Eqs. (16) and (21) fully capture the physics behind acousto-optic interactions.

III. ACOUSTO-OPTIC FDFD FORMALISM

Having presented the acousto-optic equations, in this section, we introduce the finite-difference
treatment of these equations in order to construct the acousto-optic FDFD algorithm and reach a self-
consistent solution for the fields. The formalism in this section is completely general; for a concrete
example of a two-dimensional formalism, please refer to Part 1 of the supplementary material.

The coupled nonlinear equations (16) and (21) are the basis for the acousto-optic FDFD algorithm
and must be solved simultaneously for the electric fields Em ≡E (ωm) at all frequency components
ωm and the acoustic field U. In a simulation, we keep a total of M frequency components and
ensure that the solution converges as we increase M. By doing so, we need to solve a total of
M + 1 complex nonlinear system of equations. To efficiently solve such a system of nonlinear
equations, we adopt the Newton-Raphson method34 to iteratively compute the self-consistent solution
{Em, U}. The treatment below is similar in setup to the harmonic balance method for nonlinear circuit
simulations35,36 as well as other frequency domain algorithms developed to solve for the steady-state
solutions of lasers while accounting for the nonlinear effects due to gain saturation.37–40 To start, we
first define a vector v that contains 2(M + 1) complex field elements

v= [v1 v2 ... vM vM+1 vM+2 ... v2M v2M+1 v2M+2]T

≡
[
E1 E2 ... EM E∗1 E∗2 ... E∗M U U∗

]T
. (22)

With this definition, one can rewrite Eqs. (16) and (21) along with their complex conjugate
counterparts into a set of 2(M + 1) functionals g(v),

g(v)= Ôv + C(v) − b= 0, (23)

where Ô ∈C2(M+1)×2(M+1) is a block-diagonal operator that acts linearly on the fields

Ô= diag
[
A1 A2 ... AM A∗1 A∗2 ... A∗M B B∗

]
, (24a)

Am =∇ × µ0
−1∇ × ( ) − ωm

2ε0εr , (24b)

B= ρΩ2 + ∇ ·

(
c
−
+ iΩη

−

)
:∇ ⊗ (), (24c)

b ∈C2(M+1)×1 is the current sources for each field

b=
[
−iω1J1 ... − iωMJM iω1J∗1 ... iωMJ∗M − Fext − F∗ext

]T
, (25)

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-2-002702
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and C(v) is a set of 2(M + 1) nonlinear functionals that captures the nonlinear coupling amongst the
elements of v,

C(v)=
*....
,

K(v)
K∗(v)
L(v)
L∗(v)

+////
-

. (26a)

In Eq. (26a), K(v) describes M set of equations that govern the optical components {E1 E2

· · ·EM}, and L(v) is the set of equations that governs the acoustic wave U. From Eqs. (16) and (21),
the mth set of equations in K(v) can be identified as

Km(v)=−ωm
2
(
P(b, PE)(v) + P(s, MB)(v)

)
, (26b)

and L(v) can be written as

L(v)=F(b,ES)(v) + F(s,ES)(v) + F(s,MB)(v). (26c)

Having explicitly written out g(v) and its constituents, the 2(M + 1) × 2(M + 1) Jacobian operator
Dg(v) can be computed as

Dg(v)=
∂g(v)
∂v
= Ô +

∂C(v)
∂v

, (27)

where Ô is given in Eq. (24). To derive the second term of the Jacobian, we simply apply partial
derivatives with respect to each of the constituents of v, which consists of each of the field components
as shown in Eq. (22). Because of the large volume of equations involved in calculating ∂C/∂v, we
supply the details of this computation in Part 2 of the supplementary material.

With the Jacobian Dg(v), we can apply the Newton-Raphson algorithm34 to iteratively solve for
the self-consistent solution for which g(v) = 0. Given the initial condition v0 = 0, subsequent updates
at the (k + 1)th step for vk+1 can be obtained as

vk+1 = vk − sk , (28)

where sk defines the step of the Newton-Raphson algorithm, computed by solving the following linear
equation:34

Dg(vk) sk = g(vk). (29)

The iterative solver is terminated when convergence is reached, defined by, when the Newton step

δ(k)= | |vk+1 − vk | | (30)

is sufficiently small.
In the presentation above, for simplicity and clarity in the formalism, we describe the Newton-

Raphson method in terms of taking derivatives with respect to both the field and its complex conjugate.
In the actual numerical implementations below, we alternatively treat v as 2(M + 1) real unknowns

v= [Re {E1} Im {E1} · · · Re {EM } Im {EM } Re {U} Im {U}]T (31)

and formulate Eq. (23) in terms of 2(M + 1) real set of equations. Then we solve for the real and
imaginary parts of the fields using the Newton-Raphson method. In the limit where the acousto-optic
coupling goes to zero, the Jacobian reduces to the linear operator Dg (v)= Ô independent of v, and
Eq. (28) converges in one iteration to the solution that corresponds to the uncoupled linear solutions
at independent acoustics and optical frequencies. Since on-chip acousto-optic coupling is relatively
weak, the Newton-Raphson algorithm converges in a relatively small number of iterations.

In practice, to obtain the acousto-optic FDFD numerical solution of the system as described
by Eq. (23), one can discretize the simulation domain on, for instance, the Yee lattice.41 When
discretizing both the optical and acoustic parameters in the same cell, the optical fields are discretized
in accordance with the standard Yee method, whereas the acoustic displacement fields are co-located
with their electric field counterparts. The optical and acoustic material parameters are located at the
center of each Yee cell. To construct the boundary operator σs as a one-dimensional delta function

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-2-002702
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at the material boundary, we adopt the numerical treatment as done in Ref. 42, where we locate the
boundary pixels within a material, derive its surface-normal unit vector, and assign a value of 1/∆h
to the σs term in Eqs. (16) and (21) associated with that pixel, where ∆h is the pixel size.

Regarding to the numerical properties of our algorithm, for concreteness, let us consider a
simulation space that is discretized into K field components, and thus the discretized g(v) contains
2K(M + 1) real nonlinear equations, where v ∈R2K(M+1) contains all discretized unknowns in Eq. (31).
In doing so, the Jacobian in Eq. (27) is a well-defined R2K(M+1)× 2K(M+1) matrix, and the Newton-
Raphson update equation in Eqs. (28) and (29) can be computed at each iteration. In particular, the
Jacobian Dg(vk) is sparse, and Eq. (29) can thereby be very efficiently computed at each step with
methods such as matrix factorization43 for smaller problems or with various iterative methods such
as the bi-conjugate gradient method44 and the quasi-minimal residual method45 for larger systems.

IV. SIMULATION VERIFICATION AND EXAMPLE

In this section, we will use the acousto-optic FDFD algorithm that we developed in Sec. III
and dedicate the rest of this paper to provide validation for our algorithm as well as an example of
its application to a realistic acousto-optic ring resonator. For simplicity, we restrict our analysis to
two-dimensional transverse-electric (TE) optical fields (where the nonzero field components are Ez,
Hx, and Hy). The details of the formalism for this two-dimensional algorithm are provided in Part 1
of the supplementary material.

In the first example, we verify the acousto-optic FDFD solution by applying it to a waveguide
with SBS gain. To be concrete, we assume the propagation direction to be x̂, the transverse direction
to be ŷ, and the infinite out-of-the-plane direction to be ẑ. In a backwards SBS gain process, one
typically considers the interaction of three modes: a backward-propagating optical pump E2 at ω2

with propagation constant β2, a forward optical Stokes wave E1 at ω1 with propagation constant β1,
and an acoustic wave U=Ux x̂+Uyŷ at frequencyΩ=ω2 −ω1 and wave vector q= β2 − β1.1–4 Upon
the generation of and the mixing with the acoustic wave, the Stokes wave experiences exponential
growth along its propagation direction. To maximize the gain of the Stokes field, given the generated
acoustic wave vector q, the frequency of a generated acoustic waveΩmust be approximately equal to
the frequency of an acoustic guided mode of the waveguide at this wavevector q, as denoted by ΩB.
For an acoustic mode of the form U= û (y) e−iqx+iΩBt , where û(y) describes the acoustic modal profile,
its dispersion relation can be obtained from the solution of the following eigenvalue equations:7,8,30

ρΩB
2ûi +

∑
jkl

(
∂yŷ − iqx̂

)
j
cijkl

(
∂yŷ − iqx̂

)
k

ûl = 0. (32)

As a numerical demonstration, we consider a slab waveguide geometry that is shown in Fig. 2(a).
Such a structure can be used to model the suspended waveguide geometry that has been widely used
for achieving efficient on-chip SBS gain processes.9,11 The optical and acoustic parameters of the
waveguide core material are chosen to be those of chalcogenide glass, As2S3.46 Optically, the core
has a relative permittivity of εWG = 5.6169, and it is 20 µm long and 275 nm wide. Acoustically, the
core has a density of ρ0 = 3200 kg/m3, and in the Voigt notation, its stiffness tensor is [c11, c12]=
[18.7, 6.1] GPa, and the viscosity tensor is

[
η11, η12

]
= [1.8, 1.45] mPa s.46 Here, we assume that

As2S3 is an isotropic material, which implies that c66 = (c11 − c12)/2 and η66 = (η11 − η12)/2.30 This
choice is purely to make it possible to derive the analytical solution of the waveguide as to compare
with the acousto-optic FDFD algorithm. However, the acousto-optic FDFD algorithm is completely
general and can be applied to solids with any form of stiffness and viscosity tensors.

In this structure, the acousto-optic interaction occurs when the Ez field couples with the Ux and
Uy fields through both moving boundary effects and electrostriction/photo-elasticity.7,8 The moving
boundary phenomena can be incorporated through the interplay of radiation pressure and boundary
perturbation, and the electrostriction/photo-elasticity processes are effected by the photo-elastic tensor
as described in Sec. II. In this 2D example, the bulk electrostrictive/photo-elastic coupling between
Ez, Ux, and Uy can be described by a single photo-elasticity element p12. In the As2S3 waveguide
in Fig. 2(a), the acousto-optic interaction happens between the x = 1 µm and the x = 19 µm region
of the waveguide core, where we assign p12 = 0.24.46 The core is surrounded by vacuum, which
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FIG. 2. (a) Schematic of the waveguide structure with the electrostrictive region indicated. The Stokes wave is sent from left to
right, and the pump is sent from right to left. (b) Dispersion relation of the optical waveguide. The blue and red points indicate
the pump and the Stokes waves, respectively. The purple arrow represents the acoustic mode that couples the pump and Stokes
waves. The insets on the right hand side show the acoustic and optical mode field patterns supported by the waveguide.

has a stiffness tensor of 0 and enforces the traction-free boundary conditions.30 To treat the surface
coupling, we use the discretized version of Eqs. (16) and (21), where we set σs to be 1/∆y on the
waveguide boundary, which is normal to ŷ.

To determine the parameters for the efficient excitation of the SBS process, we first calculate the
waveguide’s optical and acoustic dispersion relations. This waveguide supports only one optical mode,
but acoustically it is multi-moded. The optical dispersion curve is shown in Fig. 2(b), and we find
that for a Stokes mode with frequency ω1 = 2π × 193.4 THz (corresponding to an optical wavelength
of 1.55 µm) and propagation constant β1 = 7.543 µm−1, there exists a backward acoustic mode at
ΩB = 2π×5.79 GHz and propagation constant q=�15.08 µm�1 that is phase- and frequency-matched
with a pump mode with β2 = q + β1 and ω2 =ω1 +ΩB.

In constructing the acousto-optic FDFD simulation, we keep a total of M = 6 frequency com-
ponents equally spaced at the Brillouin frequency ΩB. For this two-dimensional TE simulation, we
place Ez at the origin of each Yee cell,41 and the Ux and Uy are located halfway along the x and y
edges of the cell, respectively. The optical and acoustic material parameters are placed at the cen-
ter of that cell, and the boundaries of the waveguide region are defined by the pixels inside the
waveguide that are immediately adjacent to vacuum (see Part 1 of the supplementary material). The
spatial discretization of the simulation domain is ∆x =∆y= 25 nm, and the simulation domain is sur-
rounded by 15 layers of stretched-coordinate perfectly matched layers (SC-PMLs) on all four edges
to suppress spurious reflections.25,47 A forward Stokes wave with a guided power of 1 µW/µm is
excited from the x = 0.8 µm position. At the x = 19.2 µm position, we inject a backward continuous
pump wave at ω2, whose normalized field profile is shown in Fig. 3(a). Under this backward SBS
configuration, the generated sideband frequency components alternate between propagating forward
and backward. However, our simulations do not make a priori assumptions about the propagation
direction of these sidebands. Instead, the directionality is inferred from analyzing the simulation
results. In Fig. 3(b), we plot the field profile of the Stokes wave when the pump power is chosen
to be 100 W/µm; such a high pump power is used in order to observe an appreciable SBS pro-
cess of a relatively short waveguide. Visually, we see that the Stokes field is amplified along the
propagation direction. Furthermore, the field profiles of the generated acoustic field are shown in
Fig. 3(c).

We now compare the results from the acousto-optic FDFD solutions with those from the coupled
mode theory (CMT) [see Part 3 of the supplementary material].48 In Fig. 3(d), the powers of the Stokes
field P1 and acoustic field Pa from both FDFD and CMT results are plotted along the waveguide

ftp://ftp.aip.org/epaps/apl_photonics/E-APPHD2-2-002702
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FIG. 3. (a) Normalized plot for the Ez field in the back-propagating pump wave. (b) Electric field pattern of the forward-
propagating Stokes waves at a pump power of P2 = 100 W/µm. The optical field is clearly amplified as it propagates
in x̂. (c) Field patterns of the acoustic mode inside the waveguide. (d) Comparison between the acousto-optic FDFD
method with the solution from coupled-mode theory (CMT) under various pump powers. (e) Plot of maximum field
amplitude that exists in each frequency sideband. The field amplitudes decrease drastically as we deviate from the pump
and Stokes frequencies. (f) Plot of the relative error with number of iterations. The algorithm converges in only four
iterations.

direction for various pump powers P2. For all the pump powers analyzed, we observe remarkable
agreement between the FDFD and CMT solutions, which provide a validation that our algorithm
can accurately predict the physics of acousto-optic interactions. The slight disagreement for the
acoustic power at a pump power of 100 W/µm is likely due to the breakdown of the slowly-varying
envelope-approximation in CMT.8,48

Next, we analyze the convergence of the acousto-optic FDFD algorithm. In Fig. 3(e), we plot
the maximum electric field amplitudes at each of the sideband frequencies, and we note that the field
amplitudes decrease rapidly as the sideband frequencies deviate farther away from ω1 and ω2. This
justifies our choice of keeping only a relatively small number of frequency sidebands. Furthermore,



020801-10 Shi, Cerjan, and Fan APL Photonics 2, 020801 (2017)

FIG. 4. (a) Left: schematics of the ring resonator geometry, as well as the input locations of the pump (blue) and Stokes
(red) waves. Right: without acousto-optic interactions, the ring resonator is critically coupled with the external waveguide at
λres = 1558.29 nm with a Q factor of 6.25 × 103. (b) Left: a pump wave with a guided power of P2 = 90 mW/µm is sent into
the ring and is amplified inside the ring. Right: as a Stokes wave counter-propagates against the pump, it is amplified at the
output. (c) Field plots of the acoustic modes generated from the interaction of the pump and Stokes waves. The fields show
that the waveguide is highly multi-moded at the SBS frequency ΩB. (d) Plot of the power amplification experienced by the
Stokes field as its frequency deviates fromΩB. The plot shows an ultra-narrow linewidth in the gain spectrum with a Fano-like
line shape.

in Fig. 3(f), we plot the error at each Newton step, defined as δ(k) in Eq. (30), relative to the error at
the first Newton step, δrelative = δ/δ (0). We see that the solution converged in just four iterations with
the update equation in Eq. (28).

We now demonstrate the application of the acousto-optic FDFD algorithm to a realistic acousto-
optic device. The structure we consider here is shown in Fig. 4(a), and it consists of an external
waveguide coupled to a ring resonator. Such a resonator device has been previously demonstrated
experimentally as low pump-threshold SBS lasers11,13,14 or as a nonreciprocal light storage unit,22

and it may also be used as a microwave photonic filter.17,18 The material of the waveguides is again
chosen to be chalcogenide glass As2S3, whose optical and acoustic material parameters are provided
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before in the simulation of a straight waveguide. In the ring structure, both the external and the
ring waveguides are surrounded by vacuum, and they both have widths of 275 nm—the same as the
previous straight waveguide example. Because this waveguide supports numerous acoustic modes, it
is difficult to have a comprehensive analytical description of the acoustic field patterns inside the ring
waveguide. The ring has a center-to-center diameter of 4.506 µm, and it is separated from the external
waveguide by an edge-to-edge distance of 475 nm. In the simulation, the discretization of space is
chosen as ∆x =∆y = 25 nm, and the simulation domain is surrounded by 15 layers of SC-PML on
each boundary.25,47

In the absence of the acousto-optic interactions, the ring resonator is critically coupled to the
external waveguide at λres = 1558.29 nm (ωres = 2π × 192.4 THz) with a quality factor of Q= 6.25
× 103 as shown in the right panel of Fig. 4(a). When operating on resonance, the optical power
inside the ring waveguide is strongly enhanced over that of the external waveguide, which drastically
increases the acousto-optic interaction and reduces the pump power required to observe the SBS
gain.2,3,11,13,14

To demonstrate the SBS gain from this structure, we apply a photo-elastic coefficient of
p12 = 0.24 inside the ring and compute the surface term σs at the boundary pixels of the ring
according to the surface-normal direction at each pixel. We then send in an acoustic pump wave
from the right-hand side at ω2 =ωres with a guided power of 90 mW/µm [Fig. 4(b), left]. Mean-
while, we inject a Stokes wave from the left-hand side at a wide range of the Stokes frequencies
ω1 with a power of 1 µW/µm [Fig. 4(b), right], which, together with the pump wave, gener-
ates a large number of acoustic modes inside the ring waveguide [Fig. 4(c)]. As we sweep the
Stokes frequency ω1, we find that ΩB =ω2 − ω1 = 2π × 5.88 GHz, the Stokes field becomes reso-
nant with an acoustic mode, where the Stokes field is highly amplified inside the ring waveguide,
resulting in an amplified transmission at the Stokes frequency ω1 [Fig. 4(b), right]. For the cho-
sen pump power and ring geometry, the transmitted power at ω1 is 12 times stronger than the
input Stokes power. In Fig. 4(d), we plot the power amplification (Pout/Pin) from this acousto-
optic interaction as we vary the Stokes frequency by ∆Ω around ω2 − ΩB. From this plot, we
observe an SBS linewidth of approximately 13 MHz, which is congruent with the SBS linewidth
of As2S3.46 For the simulations above, we achieve convergence by keeping a total of M = 6 fre-
quency components, and the acousto-optic algorithm converges in four steps of the Newton-Raphson
algorithm.34

There are several interesting observations that we can make from the simulations above. First,
we note that although we are using the same waveguide geometry, the Brillouin frequency for the ring
waveguide differs from that of the straight waveguide by 90 MHz, which captures the change in the
acoustic wave vector due to the bending of the ring structure. In addition, another interesting feature
is that the gain spectrum exhibits an asymmetric Fano-resonance line shape as seen in Fig. 4(d).
This arises from the interference between the sharp acousto-optic resonance mode and the much
broader mode of the ring resonator.49 This intriguing detail is typically neglected in the descriptions
of experimental observations11,13,22,23 but can be captured through first-principles calculations via
the acousto-optic FDFD method.

V. DISCUSSION AND SUMMARY

In summary, we have presented a numerically efficient, first-principles method for simulating
SBS in optical devices. Although both devices simulated here consisted of two-dimensional struc-
tures with a transverse electric polarization operating using the backwards SBS configuration, the
theory underlying the acousto-optic FDFD algorithm is completely general to acousto-optic and
optomechanic wave phenomena, and thus this algorithm can be extended to three dimensions, as
well as to other forms of acousto-optic interactions, such as the forward SBS process or an on-chip
acousto-optic modulator. Furthermore, the concept behind this algorithm is not restricted by the
method with which we discretize the simulation domain, so it can also be formulated for other first-
principles frequency-domain techniques such as the finite element method (FEM), where a different
discretization scheme is used.50 In fact, since FEM is formulated as the solution to boundary value
problems and is superior to FDFD in modeling curved surfaces, we should expect the equivalent
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FEM formalism of the acousto-optic interaction to be more accurate in handling moving boundary
effects.

When applying the acousto-optic FDFD algorithm, the most computationally expensive step
lies in solving the linear equation in Eq. (29). In the two-dimensional acousto-optic simulations
above, since the resulting Jacobian in Eq. (27) is sparse and not symmetric, we use the UMFPACK
package built within MATLAB to efficiently factorize the Jacobian matrix and solve Eq. (29).43,51

On a computer cluster, using 12 cores of CPU, where each core is an AMD Opteron 6386SE (2.8
GHz/16 MB/140 W) processor, each of the first simulation examples converged in 40 min, whereas
each of the second examples converged in 13 min. For larger acousto-optic FDFD simulations such
as those performed in three dimensions, one needs to resort to iterative techniques, such as bi-
conjugate gradient44 or quasi-minimal residual methods45 for solving a larger system of equations.
In using an iterative solver, we can expect a similar convergence property as described by Ref. 27.
Depending on the choice of PML and conditioning of the Jacobian matrix in Eq. (19), one may need
to precondition the Jacobian matrix as detailed in Refs. 27 and 28 to obtain solutions with accelerated
convergence.

We should note that despite the versatility of the acousto-optic FDFD algorithm, there are
some limitations. First, from a computation point of view, the algorithm may be incapable of
simulating three-dimensional devices that are larger than several hundred microns in length. This
algorithm is much better suited for compact micron-scale acousto-optic devices with a complex
geometry, where many optical and acoustic modes would interact in nontrivial ways such that a
modal description is difficult or intractable. Second, we made the underlying assumption that there
exists only one acoustic frequency. While this is true for the vast majority of SBS devices, there
are other structures that harness a cascaded SBS process that produce acoustic waves at various
frequencies.52 Furthermore, this algorithm is not designed to handle thermally generated phonons
with a broadband of frequency components.4 To include the generation of other acoustic frequen-
cies, we may use the same concept developed in Sec. II to construct a larger system of nonlinear
equations and capture the interactions amongst all of the frequency components. However, if the
number of optical and acoustic frequency components becomes too large, the solution to the dis-
cretized system could become computationally infeasible. Lastly, in understanding practical SBS
devices, it is important to treat the effect of pump fluctuation on the linewidth of the device. The
formalism presented in the paper does not directly treat such an effect of pump fluctuation. Never-
theless, one can imagine a treatment where one calculates the response of a structure to a pump at
a given frequency, and then determine the effect of pump frequency fluctuation by a perturbation
approach.14,40,42,53

At the final stage of the revision, it was brought to our attention that concurrent to our work,
there is another proposal for performing first-principles simulations of the SBS process using a
transformation optics approach.54 Both our work and the work in Ref. 54 point to the emerging
importance of performing first-principles simulations of photon-phonon interactions for the design
and characterization of acousto-optic devices.

SUPPLEMENTARY MATERIAL

See supplementary material for an implementation of the acousto-optic FDFD algorithm in two
dimensions, the derivation of the Jacobian operator, and the coupled mode theory calculation of SBS
in a waveguide.
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