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A striking example of frustration in physics is Hofstadter’s butterfly, a fractal structure that emerges from
the competition between a crystal’s lattice periodicity and the magnetic length of an applied field. Current
methods for predicting the topological invariants associated with Hofstadter’s butterfly are challenging or
impossible to apply to a range of materials, including those that are disordered or lack a bulk spectral gap.
Here, we demonstrate a framework for predicting a material’s local Chern markers using its position-space
description and validate it against experimental observations of quantum transport in artificial graphene in a
semiconductor heterostructure, inherently accounting for fabrication disorder strong enough to close the
bulk spectral gap. By resolving local changes in the system’s topology, we reveal the topological origins of
antidot-localized states that appear in artificial graphene in the presence of a magnetic field. Moreover,
we show the breadth of this framework by simulating how Hofstadter’s butterfly emerges from an initially
unpatterned 2D electron gas as the system’s potential strength is increased and predict that artificial
graphene becomes a topological insulator at the critical magnetic field. Overall, we anticipate that a
position-space approach to determine a material’s Chern invariant without requiring prior knowledge of its
occupied states or bulk spectral gaps will enable a broad array of fundamental inquiries and provide a novel
route to material discovery, especially in metallic, aperiodic, and disordered systems.
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Over the last half-century, few physical systems have
been studied as intently as two-dimensional electron gases
subjected to a perpendicularly oriented magnetic field. By
itself, this configuration yields the integer quantum Hall
effect, whose defining feature is a quantized conductivity
stemming from protected edge-localized transport channels
[1–3]. However, when a periodic electrostatic potential is
applied, the system becomes frustrated—the applied mag-
netic field B is attempting to drive the system to exhibit
degenerate Landau levels, characterized by the magnetic
length lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

, while the periodic potential tries to
force the system to exhibit extended Bloch modes, char-
acterized by the lattice constant a. This competition results
in each band being split into subbands separated by
minigaps that form a fractal as a function of the applied
magnetic field and Fermi energy, Hofstadter’s butterfly [4].
The fractal structure for a spectrally isolated underlying
band is periodic in Φ=Φ0, where Φ ¼ BA is the magnetic
flux through a unit cell with area A and Φ0 ¼ h=e is the
magnetic flux quantum. Hofstadter’s butterfly has been
observed in artificial quantum materials [5–7] and more
recently in graphene superlattices [8–12].

Despite substantial progress in achieving system perio-
dicities large enough to enter the parameter regime where
Hofstadter’s butterfly manifests, Φ ∼Φ0, it remains a
formidable challenge to predict the Chern numbers asso-
ciated with each minigap in experimentally realizable
systems. For low-energy models with limited degrees of
freedom, there are a few different approaches to predicting
a minigap’s Chern number: via a Diophantine equation
[13–17], Středa’s formula [18], semiclassical analysis [19],
bulk-boundary correspondence [20–22], or direct calcula-
tion using the occupied states [23–25]. However, these
methods are impossible or impractical to apply to many
experimental platforms, stymied either by prohibitively
large computational costs in the absence of a low-energy
description, the lack of a bulk spectral gap due to disorder,
or the need for system-specific knowledge [17,26,27]. In
such cases, the last resort is direct simulation of a system’s
quantum transport [28,29], requiring the specification of a
device geometry and still yielding a costly computational
endeavor for realistic systems. Moreover, such an approach
will miss bulk-embedded phenomena that do not contribute
to the chosen transport channels.
Here, we theoretically demonstrate and experimentally

validate the spectral localizer framework [30–32] for
predicting a quantum material’s local Chern topology
and associated boundary-localized states. Moreover, we
show how the spectral localizer framework can be used to
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reveal distinct material topology at different length scales
of multiscale systems. Using this framework in artificial
graphene [33,34] subjected to an out-of-plane magnetic
field and described by a continuum model without a low-
energy approximation, we demonstrate quantitative agree-
ment between the Chern marker and the experimentally
observed Hall conductivity, while inherently accounting for
fabrication disorder that is strong enough to remove the
system’s spectral gaps. Moreover, by spatially resolving
local changes in the system’s topology, we show that many
of the pinned states that populate the gaps between the bulk
Landau levels are topological, stemming from the distinct
topology of the antidots relative to the unpatterned bulk for
many magnetic field strengths. Taking advantage of the
spectral localizer’s ability to efficiently operate without
a low-energy approximation, we numerically observe the
formation of Hofstadter’s butterfly from an unpatterned
system. Finally, we predict the opening of a topological
band gap in artificial graphene at the critical magnetic field
due to long-range couplings, yielding a topological insu-
lator at modest magnetic fields. Looking forward, we
anticipate that the spectral localizer framework’s applica-
tion to realistic multiscale systems will both yield a novel
approach to material classification and enable a broad array
of fundamental inquiries, such as those into the formation
of Hofstadter’s butterfly in twisted materials [35–37], as
well as aid in the search for materials that exhibit the
quantum anomalous Hall effect [38–45].
To motivate the development of our theoretical approach,

we consider an electron gas confined to an effectively 2D
quantum well layer in InAs surrounded by barrier layers of
AlSb in a semiconductor heterostructure, into which an
antidot triangular lattice is added via interferometric lithog-
raphy. The triangular antidot lattice confines the electron
gas in plane to areas furthest from the antidots yielding
an effective honeycomb lattice for the electrons in the
low-potential regions between three antidots coupled
together via the potential troughs between two antidots
[Figs. 1(a) and 1(b)], altogether creating artificial graphene.
It has been shown [33,34,46–49] that the low-energy
electronic band structure of artificial graphene mimics
the behavior of natural graphene’s Dirac cones. In the
presence of a perpendicular, static magnetic field B ¼ Bẑ,
the 2D electron gas in artificial graphene is assumed to be
noninteracting and characterized by the single-particle
Hamiltonian

H ¼ 1

2m� ð−iℏ∇þ eAðxÞÞ2 þ VðxÞ − μBg
ℏ

szB; ð1Þ

where the electrons have effective mass m� ¼ meffm0,
VðxÞ is a scalar potential that accounts for the system’s
nanoscale structure, and the strength of the Zeeman
splitting is proportional to the effective Landé g factor of
the heterostructure and the electron’s spin sz.

The measured longitudinal (Rxx) and Hall (Rxy)
resistivities of our AlSb-InAs-AlSb artificial graphene het-
erostructure are shown in Figs. 1(c) and 1(d). Overall, the
Rxx and Rxy traces resemble those of a typical 2D elec-
tron gas in an unpatterned heterostructure. Shubnikov–de
Haas (SdH) oscillations are observed at low magnetic field
strengths, and a fast Fourier transform analysis of these SdH
oscillations yields an electron density of n ∼ 8 × 1011 cm−2.
In the high B-field regime, fully developed quantized Hall
states are formed, with Rxx assuming a low resistance value
and Rxy quantized to the value of h=e2ν in between Landau
levels with filling factor ν ¼ nh=eB.
To numerically model artificial graphene using a posi-

tion-space description, we first consider the zero-field limit

µ

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (a) Schematic of the antidot potential profile (gray) with
strength Vh and locations where the electrons are approximately
localized (blue) to form the artificial graphene pseudo-atoms.
(b) SEM image of a representative experimental specimen.
(c) Measured longitudinal Rxx (blue) and transverse Rxy (red)
resistances versus the magnetic field in the artificial graphene
AlSb-InAs-AlSb semiconductor heterostructure at 0.3 with lattice
constant a ¼ 250 nm, antidot diameter a=2, and electron density
n ∼ 8 × 1011 cm−2. (d) Enlarged view of the measured Rxx in the
dashed cyan box in (c). (e) Calculated density of states (blue) and
ðCL

ðx;y;EFÞÞ−1 calculated in the unpatterned bulk versus the applied
magnetic field at the Fermi energy EF ¼ 85 meV for artificial
graphene with the same geometry as the experimental system
with simulation flake size ∼2 × 3.4 μm2, and model parameters
Vh ¼ 25 meV, normally distributed disorder with standard
deviation δVh ¼ 5 meV per antidot, m� ¼ 0.023m0, g ¼ 40,
and discretization Δx ¼ 2 nm. ðCL

ðx;y;EFÞÞ−1 simulations use

κ ¼ 1 × 10−3 meV=nm. (f) Enlarged view of the simulated
DOSðEFÞ in the dashed cyan box in (e).
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of Eq. (1) and approximate the Laplacian in the kinetic term
K ¼ −ðℏ2=2m�Þ∇2 using finite-difference (FD) methods
[50] with vertex spacings Δx ¼ Δy. This procedure trans-
forms K into a sparse bounded matrix KðFDÞ in which
adjacent vertices in the square lattice are coupled together
with strength tðFDÞ ¼ ℏ2=ð2m�Δx2Þ. For electron energies
E sufficiently smaller than tðFDÞ, KðFDÞ accurately describes
a free electron. When discretized, the potential energy VðxÞ
becomes a diagonal matrix VðFDÞ representing the potential
strength at each vertex. Finally, the magnetic field is
reintroduced both by using the Peierls substitution [51]
in KðFDÞ (see Supplemental Material Sec. SI [52]), yielding
a B-dependent phase to some of the couplings tðFDÞ, and by
including the Zeeman splitting in VðFDÞ. Our model is para-
metrized by comparing Rxx against the density of states
(DOS) of the discretized system [Figs. 1(e) and 1(f)], finding
a Fermi level EF ≡ πnℏ2=m� ∼ 85 meV, and g ¼ 40 using
a uniform Zeeman splitting approximation [53,54].
However, in contrast to a free 2D electron gas, careful

examination of Rxx in Figs. 1(c) and 1(d) shows additional
features in between the system’s main Landau levels, e.g.,
near B ¼ 7 T. These features are numerically reproduced
by choosing a disordered antidot potential strength
Vh þ δVhξ, with Vh ¼ 25 meV, δVh ¼ 5 meV, and nor-
mally distributed ξ. Simulations show that the between-
Landau level features correspond to states at the Fermi
energy pinned to the antidots (Fig. 2) whose fine features
in the ordered DOS are blurred out by disorder (see
Supplemental Material Sec. SII [52]). As such, the differ-
ence in the relative prominence of these features in the

observed Rxx versus the simulated DOS can be understood
as these states’ spatial pinning limiting their charge mobility
and thus limiting their contribution to Rxx [66,67].
Experimentally, we also see that these pinned states have
a vanishing contribution to the Hall conductance. Yet, as
these antidot-localized states completely fill the bulk spectral
gap, they prohibit the use of many approaches for predicting
the Hall conductivity.
Instead, to predict the Chern invariants between the

Landau levels of disordered artificial graphene despite
the lack of a spectral gap at the Fermi energy, we employ
the spectral localizer framework [30–32] that has previ-
ously been successful at classifying the topology of gapless
acoustic metamaterials [68], photonic crystals [55,56],
and toy models [69]. The spectral localizer is a composite
operator formed by combining the eigenvalue equations of
a finite system’s Hamiltonian and position operators using a
Clifford representation; in 2D, the Pauli matrices can be
used, yielding

Lðx;y;EÞðX; Y;HÞ ¼ κðX − x1Þ ⊗ σx þ κðY − y1Þ ⊗ σy

þ ðH − E1Þ ⊗ σz: ð2Þ

Here, X and Y are position operators, 1 is the identity, and
κ > 0 is a scaling coefficient that ensures consistent units
and similar spectral weighting between the summands.
Heuristically, the choice of κ is analogous to the choice
of integration region necessary for other local Chern
markers [24,25]. The approximate scale of κ is set by the
smallest dimension of the finite system Lmin and the width
of the relevant bulk spectral gap Egap, as κ ∼ Egap=Lmin

[57]. For artificial graphene in the absence of electron
interactions, the Landau level spacing sets the size of the
spectral gap, EgapðBÞ ¼ ℏωcðBÞ where ωcðBÞ is the cyclo-
tron frequency. In practice, choices of κ spanning many
orders of magnitude provide quantitatively similar results
(see Supplemental Material Sec. SIII [52]), though increas-
ingly large simulation domains are needed for weak
magnetic fields as EgapðBÞ decreases.
The 2D spectral localizer defines a local Chern marker

CL
ðx;y;EÞðX; Y;HÞ ¼ 1

2
sig½Lðx;y;EÞðX; Y;HÞ�∈Z; ð3Þ

where sig denotes the matrix’s signature, its number of
positive eigenvalues minus its number of negative ones
[30–32]. Heuristically, the ability of Eqs. (2) and (3) to
predict a system’s Hall conductivity can be understood
as follows: First, for a given choice of ðx; y; EÞ, the spectral
localizer is performing dimensional reduction from 2D
to 0D, i.e., Lðx;y;EÞ can be viewed as the Hamiltonian of
a fictitious 0D system. Then, CL

ðx;y;EÞ is calculating the

0th Chern number of this fictitious 0D system. Finally,
because the dimensional reduction is consistent with Bott

(a) (b)

(c)

(d)

(e)

(f)

(g)

FIG. 2. (a),(b) Calculated DOS (blue) and local Chern marker
inverse (red) for an ordered version of the system considered in
Fig. 1, separated by spin. The local Chern marker is calculated
both in the unpatterned bulk (solid) and center of an antidot
(dashed) using κ ¼ 0.5 meV=nm. (c)–(g) LDOS of the spin down
sector at EF showing bulk Landau levels at B ¼ 6.21 T (c), chiral
edge states at B ¼ 6.49 T (d), antidot-localized Landau levels at
B ¼ 6.94 T (e), and chiral antidot–bulk interface-localized states
at B ¼ 7.52 T (f) and B ¼ 8.42 T (g).
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periodicity [70], CL
ðx;y;EÞ is equivalent to a local first Chern

marker of the original 2D system at ðx; y; EÞ. For an
infinite, gapped system with E in the relevant band gap,
CL
ðx;y;EÞ is provably equal to the first Chern number; in the

thermodynamic limit the local Chern marker is defined
through the spectral flow of Lðx;y;EÞ [32,58].
Choosing ðx; y; EFÞ in the unpatterned bulk and at the

Fermi energy, we find quantitative agreement between the
measured Rxy and simulated ðCL

ðx;y;EFÞÞ−1 of a system with

disordered antidots, despite the lack of a spectral gap at the
Fermi energy at every magnetic field strength [Figs. 1(c)
and 1(e)]. However, by choosing ðx; y; EFÞ within an
antidot and increasing κ ∼ 2Egap=a to resolve phenomena
at a smaller spatial scale corresponding to the antidot
diameter a=2 (see Supplemental Material Sec. SIII [52]),
the local Chern marker reveals the topological origin of
many of the antidot-pinned states. In particular, noting that
EF > Vh, the spectral localizer framework identifies that, in
an ordered system at large magnetic fields, pinned states
can both form highly degenerate antidot-confined Landau
levels across which the local Chern marker changes its
value independent from the marker evaluated in the
unpatterned bulk, as well as chiral states localized to the
interface between the antidot and the unpatterned bulk
when the two regions have different local Chern numbers
(Fig. 2). The distinction between these two types of pinned
states can be seen in their local density of states (LDOS),
see Figs. 2(e)–2(g), and their localization confirms why
neither type of pinned state strongly contributes to the
experimentally accessible Rxx and Rxy. When the local
topology of the antidot regions matches that of the
unpatterned bulk, the LDOS reveals those edge conduction
channels responsible for Rxy, see Fig. 2(d); note, combining
both spin sectors and adding disorder removes these B-field
ranges where only chiral edge states exist to recover the
DOS of Figs. 1(c)–1(f).
The ability to predict an experimental system’s minigap

Chern markers without needing to find its spectral gaps and
occupied states, develop a Vh-customized effective model,

or specify a transport geometry, offers a variety of pos-
sibilities. In Figs. 3(a)–3(d), we explore the emergence of
Hofstadter’s butterfly for a honeycomb lattice from an
unpatterned 2D electron gas as the artificial graphene
antidot potential strength is increased. In particular, by
using a discretized version of the continuum Hamiltonian
that automatically incorporates higher-energy phenomena,
the spectral localizer framework can inherently consider
the zero potential limit. As can be seen, for any positive
potential strength, horizontal line segments with vanishing
Chern markers, and about which the Chern marker changes
sign, immediately appear for Φ=Φ0 ∈Z. In the limit of
Vh → ∞ meV, Hofstadter’s butterfly becomes nearly peri-
odic about these lines as expected. These horizontal lines
also persist at much larger EF than the energy of the Dirac
point, potentially aiding in experimental design (see
Supplemental Material Sec. SV [52]). Additionally, our
simulations also reveal how the minigaps in artificial
graphene close and reopen as the antidot potential strength
is increased so that the Chern invariant can change; for
example, showing how the CL ¼ −1 minigap forms at the
Dirac point in artificial graphene’s low-energy bands at
B ¼ 0 T and slowly supersedes the CL ≥ 2 minigaps as Vh
increases.
One of the characteristic features of graphene subjected

to a magnetic field is the manifestation of the unconven-
tional quantum Hall effect for Fermi energies near the Dirac
point [71–75]. For sufficiently small B, this unconventional
behavior is distinguished by a Landau level energy spacing
following Ej ¼ vg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2eℏBjjjp

with level index j∈Z and
group velocity vg ≈ h=ð3m�aÞ in the vicinity of the Dirac
point [33]. Moreover, the Chern marker changes by 2 per
spin across each such Landau level. For weak magnetic
field strengths B≳ 0 T, the spectral localizer framework
reproduces this behavior for artificial graphene, identifying
that the Chern marker changes by 2 per spin in the
unconventional regime and the Landau level spacing is
proportional to

ffiffiffiffiffijjjp

[Figs. 4(a) and 4(b) and Supplemental
Material Sec. SVI [52] ]. Given the periodicity of
Hofstadter’s butterfly, the spectral localizer framework also

(a) (b) (c) (d)

FIG. 3. (a)–(d) Predicted CL
ðx;y;EÞ in the unpatterned bulk for a single spin sector as a function of magnetic field strength and energy for

ordered artificial graphene with lattice constant a ¼ 80 nm, antidot diameter a=2, m� ¼ 0.030m0, g ¼ 0. The flake size is
∼2 × 2.2 μm2, with Δx ¼ 2 nm and κ ¼ 4 × 10−5 meV=nm. The potential strength is increased from Vh ¼ 0 meV (a) to 2.5 (b),
10 (c), and ∞ meV (d). Green arrows denote the Dirac point energy at B ¼ 0 T (see Supplemental Material Sec. SIV [52]).
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predicts the reappearance of the unconventional quantum
Hall effect near Bc where Φ ¼ Φ0, with similar Landau
level spacing but the opposite Hall conductivities for
B≲ Bc [Figs. 4(c) and 4(d) and Supplemental Material
Sec. SVI [52] ].
For a honeycomb lattice with only nearest neighbor (NN)

couplings, Hofstadter’s butterfly is perfectly periodic at
B ¼ Bc where its DOS returns to that at B ¼ 0 T. However,
artificial graphene exhibits longer-range couplings between
its pseudo-atoms as well whose effects are automatically
incorporated through the use of a discretized continuum
model; the approximate strength tNNN=tNN ≈ 0.13 of the
next-nearest neighbor (NNN) couplings can be estimated
from the degree of chiral symmetry breaking in the
B ¼ 0 T band structure (see Supplemental Material
Sec. SVI [52]). In the presence of a magnetic field,
longer-range couplings alter the structure of Hofstadter’s
butterfly [76], and in artificial graphene they open a spectral
gap around the B ¼ 0 T Dirac point that the spectral
localizer predicts is topological CL

ðx;y;EÞ ¼ 1 [Fig. 4(d)].

Thus, through careful control over the magnetic field in
artificial graphene whose unit cell is large enough to yield
experimentally accessible Bc, the spectral localizer frame-
work shows that artificial graphene can become a topological
insulator, offering opportunities for device applications [77].
In conclusion, we have demonstrated how the spectral

localizer framework can identify the topological origins
of artificial graphene’s antidot-localized states, shown the
emergence of Hofstadter’s butterfly across both the zero-
and strong-potential limits, and predicted that artificial
graphene becomes a topological insulator at Bc. A sample
implementation of the spectral localizer is provided as part
of the Supplemental Material [52,78]. Overall, the spectral
localizer framework possesses three key advantages: it can
be applied directly to a material’s single-particle position-
space description without requiring a low-energy approxi-
mation, it can be applied without needing to find a system’s
occupied states or ensure the system has a bulk spectral gap

at the Fermi energy, and it can reveal phenomena at
different length scales of multiscale systems. Looking
forward, we expect that the spectral localizer framework
can be applied to any weakly correlated material, including
metallic and aperiodic materials, and thus offers an entirely
distinct approach to topological material classification than
existing methods that are based on a material’s band
structure [79].
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