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Classifying topology in photonic crystal
slabs with radiative environments
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In the recent years, photonic Chern materials have attracted substantial interest as they feature
topological edge states that are robust against disorder, promising to realize defect-agnostic
integrated photonic crystal slab devices. However, the out-of-plane radiative losses in those photonic
Chern slabs hasbeenpreviously neglected, yielding limited accuracy for predictions of these systems’
topological protection. Here, we develop a general framework for measuring the topological
protection in photonic systems, such as in photonic crystal slabs, while accounting for in-plane and
out-of-plane radiative losses. Our approach relies on the spectral localizer that combines the position
andHamiltonianmatrices of the system to draw a real-picture of the system’s topology. This operator-
based approach to topology allows us to use an effective Hamiltonian directly derived from the full-
wave Maxwell equations after discretization via finite-elements method (FEM), resulting in the full
account of all the system’s physical processes. As the spectral FEM-localizer is constructed solely
fromFEMdiscretization of the system’smaster equation, the proposed framework is applicable to any
physical system and is compatible with commonly used FEM software.Moving forward, we anticipate
thegenerality of themethod toaid in the topological classificationof abroad rangeof complexphysical
systems.

Originally discovered in the context of electronic systems, the concept
of topological insulators has been generalized to photonic structures
thanks to the platform-independent framework of topological band
theory used to classify such systems. Subsequently, over the past decade,
there has been substantial interest in photonic topological insulators
due to their potential to yield next-generation optical devices based on
their topologically protected edge states1. For example, non-reciprocal
waveguiding modes can be achieved in photonic crystals exhibiting
non-trivial topology from broken time-reversal symmetry, which can
be realized using gyro-electric or gyro-magnetic materials2,3 as well as in
driven nonlinear systems4. Similar waveguiding modes can also be
found in a variety of metamaterials, such as those based on shifted ring-
resonator arrays5,6, helical waveguide arrays7, or that use synthetic
dimensions8–11. Moreover, using solely the crystalline symmetries of the
photonic crystal, different classes of non-trivial topology can also be
attained, leading to robust waveguiding states along bends that preserve
the crystalline symmetry12–16 or robust cavity-like states for enhanced
light-matter interactions17–19.

Material topology in electronic systems is identified through the
system’s band structure and Bloch eigenstates using invariants defined
on the system’s Brillouin zone; similarly, topological robustness is

defined in terms of the system’s bulk band gap20,21. Traditionally, these
same invariants have been used to classify topology in photonic systems
as well. However, the analogy between topological insulators in elec-
tronic systems and in photonic systems is not always exact. For reali-
zations of photonic topological insulators operating at longer
wavelengths2,22,23, the system can be bounded by materials that provide
excellent approximations of perfect electric conductors24, yielding
similar open boundary conditions to those that appear in electronic
systems. In contrast, photonic topological insulators operating at
technologically relevant wavelengths and length-scales are generally
based on photonic crystal slab motifs, and border-free space on at least
one surface, which is gapless above the light cone [Fig. 1]. This gapless
radiative environment has two relevant consequences for the classifi-
cation of photonic topology: (1) For those wavevectors above the light-
cone, the photonic crystal slab does not possess a true band structure
consisting entirely of bound state solutions with real frequencies and
instead only exhibits a resonance band structure characterized by
complex frequencies. As such, it is not known whether standard
topological invariants, defined by integrating over a system’s occupied
bands, can be meaningfully applied to the resonances of such photonic
slab systems. (2) Similarly, the full system of photonic crystal slab plus
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surrounding environment is gapless above the light-cone, meaning that
according to band theory the system’s topological protection is not well-
defined. Thus, as already noted by Raghu and Haldane25, the radiative
environment has traditionally limited the notion of topological pro-
tection—as defined by topological band theory—in photonic topolo-
gical insulators. Therefore, although topological band theory can be
applied to photonic systems to yield some insight into their topological
properties, this cannot be viewed as a complete picture as the setting
goes beyond the scope of band theoretic approaches; any complete
picture of topological photonic crystal slabs must account for their
inherent out-of-plane radiative losses, and provide a definition of
topological protection despite these losses.

Here, we present a general framework for classifying topology in
realistic three-dimensional (3D) photonic systems that directly
accounts for both in-plane and out-of-plane radiative losses. To do so,
we solve two interconnected challenges, demonstrating how to perform
dimensional reduction to calculate invariants of 2D systems, such as
Chern numbers, for photonic crystal slab systems that are inherently
3D, and showing how this generalizes to non-Hermitian systems so that
radiative losses can be properly accounted for. The framework we
develop is rooted in the spectral localizer, which combines the position
matrices and the Hamiltonian matrix of the system to draw a local
picture of a system’s topology26. Using the operator-based approach of
the spectral localizer, we construct a spectral FEM-localizer built on an
effective Hamiltonian directly derived from the full-wave Maxwell
equations via finite-elementmethod (FEM).We demonstrate the utility
of the FEM-localizer framework through two fundamental examples in
topological photonics: a 2D photonic Chern insulator and a 2D pho-
tonic Chern quasicrystal, proving that the spectral FEM-localizer
approach is applicable to aperiodic structures that lie beyond the scope
of topological band theory. Finally, we apply the spectral FEM-localizer
to study the topology of a photonic Chern slab, showing how to generate
a local strong 2D invariant for the 3D system while directly accounting
for the out-of-plane radiative losses. As a significant portion of photonic
topological insulators are metasurfaces, the proposed classification
method will benefit to the characterization of topological metasurfaces
where topological boundary modes are used to control radiation,
scattering, and emission27–31. Given the wide variety of systems that can
be faithfully approximated by FEMs, we anticipate that our framework
has broad applicability both within photonics and beyond, and will be
useful for the study of the topology in complex physical systems where a
band theoretic picture is not available.

Results
Overview of the spectral localizer
Despite being a real-space approach to topology, the spectral localizer shares
some conceptual similarities with topological band theory. A modern
understanding of traditional band theoretic approaches to topology can be
built from the concept of atomic limits—the limit in which the couplings
between adjacent atoms,molecules, or structural decorations are turned off,
and the system’s band structure becomes completely flat. Atomic limits are
topologically trivial as they always possess a complete symmetry-preserving
localized Wannier basis32,33. Moreover, different systems are topologically
equivalent if one system can be smoothly deformed (i.e., path continued)
into the other system without closing the relevant bulk band gap (i.e., the
band gap at the frequency of interest) or breaking any necessary symmetry.
Thus, from this perspective, the question of material topology becomes one
of whether a system can be path continued to an atomic limit; if so, it is
trivial. Band theoretic approaches offer a few different methods for making
this determination, either using standard topological invariants21, or by
comparing a system’s band structure against the possible elementary band
representations34.

In contrast, the spectral localizer framework has emerged as a
method to diagnose a system’s topology from the real-space perspective
of the atomic limit. The key idea is that just as the wavevector-space
description of atomic limits is as amaterial with completely flat bands35,
a real-space description of atomic limits can be understood in terms of
the system’s position matrices Xj and Hamiltonian H via the commu-
tation relations

XðALÞ
j ;HðALÞ

h i
¼ 0; j ¼ 1; . . . ; d; ð1Þ

with d the dimension of the system. In other words, in an atomic limit,H(AL)

is block diagonal, with each block corresponding to each decoupled atom,
molecule, or structural element. Likewise, the position of each such interior
degree of freedom is condensed intoa single location.Hence,XðALÞ

j andH(AL)

commute for atomic limits.
From this real-space perspective, the question of topology then

becomes one of understanding whether a system’s non-commuting H and
Xjmatrices are nevertheless path continuable to commutingmatrices, while
preserving any necessary symmetry and maintaining the relevant bulk
spectral gap. To perform this assessment directly in real-space for a
d-dimensional Hermitian system in any of the ten Altland-Zirnbauer
symmetry classes35–38, one first forms the system’s spectral localizer by
combining Xj and H using a Clifford representation26,

Lðx1 ;...;xd ;EÞðX1; . . . ;Xd;HÞ ¼
Pd
j¼1

κðXj � xjIÞ � Γj þ ðH � EIÞ � Γdþ1:
ð2Þ

Here,Γ1,…, Γd+1 are (d+ 1)-dimensionalClifford representation satisfying
Γyj ¼ Γj, Γ

2
j ¼ I, and ΓjΓl =− ΓlΓj for j ≠ l, while I is the identity matrix. The

spectral localizer is an inherently local approach to material topology; in
Eq. (2), (x1,…, xd, E)≡ λ is the spatial coordinate (x1,…, xd) and energy E
where the system’s topology is being probed. Finally, κ is a hyperparameter
chosen to make the units consistent between the position and Hamiltonian
matrices, and to additionally balance the emphasis on the system’s position
information relative to its Hamiltonian. Typically, for gapped systems, it
suffices to choose κ ~ 2g/L39–41 where g is the width of the bulk band gap and
L is the length of the finite system considered. Extensive studies have
demonstrated the spectral localizer’s versatile applicability across a broad
range of topological systems, even beyond the traditional topological band
theory26,39–53.

Using results from the study of C*-algebras26,39,43, the spectrum of the
spectral localizer has been proven to be connected to local topological
markers for every discrete symmetry class (i.e., Altland-Zirnbauer class35–38)

Fig. 1 | Gapless environment for photonic crystal slabs. a Schematic of a free-
standing photonic crystal slab in a three-dimensional (3D) geometry. Photonic
structures are inherently 3D and are usually surrounded by an homogeneous
material that features a light cone. As such, out-of-plane radiative losses, depicted by
the red arrows, are inherent to such structures. The photonic crystal is a triangular
lattice with lattice constant a composed of dielectric rods, �ϵjj ¼ 14 for j = x, y, z, of
radius r = 0.37a and height t = 0.5a embedded in a gyro-electric material slab,�ϵjj ¼ 1
and �ϵxy ¼ �0:4i, of thickness t = 0.5a. b Band structure of the photonic crystal slab
in (a) over the first Brillouin zone, for a transverse magnetic-like polarization. The
photonic band gap at around ω = 0.42[2πc/a] is the “topological band gap” known
from extrapolation from the two-dimensional photonic crystal approximation. The
shaded region depicts those frequencies and wavevectors that are at, or above, the
light line of the surrounding air. The red line depicts the light line,ω = c∣k∣. Above the
light line, photonic crystal slabs generally exhibit resonances, not bound states.
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for every physical dimension. For a 2DHermitian system in class A, namely
a system lacking any discrete symmetries, the appropriate local topological
invariant is the local Chern number, defined as

CL
ðx;y;EÞðX;Y ;HÞ ¼ 1

2
sig Lðx;y;EÞðX;Y;HÞ
h i

; ð3Þ

where sig denotes thematrix’s signature, the difference between its total
number of positive and negative eigenvalues. A non-zero local Chern
number at (x, y, E) indicates that the re-centered position (X− xI),
(Y− yI), and Hamiltonian (H− EI) matrices cannot be path continued
to be commuting, meaning that the system cannot be deformed to the
atomic limit. In other words, a non-zero local Chern number,CL

ðx;y;EÞ ≠ 0
tells us that the system is topologically distinct from the atomic limit,
and is locally topologically non-trivial at the spatial and energy
coordinate (x, y, E).

Separate from its ability to identify material topology, the spectral
localizer can be seen as a tool to identify localized states by looking at an
approximate state ψ of both the position and Hamiltonian matrices of the
system

Xjψ ≈ xjψ and Hψ ≈ Eψ; ð4Þ

In particular, the localizer gap, defined as the smallest singular value of the
spectral localizer

μCðx1 ;...;xd ;EÞðX1; . . . ;Xd;HÞ ¼
min σ Lðx1 ;...;xd ;EÞðX1; . . . ;Xd;HÞ

� ���� ���n o
;
ð5Þ

with σ(L) being the set of eigenvalues of L, gives a measure about large of a
modification of the system is needed to realize such state ψ. As such, a
localizer gap closing μCðx1 ;...;xd ;EÞ ¼ 0 indicates that there exists such an
approximate state ψ at energy E that is localized at spatial posi-
tion (x1,…, xd).

Altogether, the local topological markers and the localizer gap give a
consistent picture of the topology locally in space and energy. The local
topological markers are used to probe the topology locally at space-energy
coordinate (x1,…, xd, E), and cannot change as long as the localizer gapdoes
not close (μCðx1 ;...;xd ;EÞ ≠ 0). When the local markers change across some
spatial or energy path from one topological phase to another topological
phase, the localizer gap must close, resulting in a localized state [Eq. (4)] at
the interface between the two topological distinct phases: this is precisely
bulk-edge correspondence.

The spectral localizer is not the only real-space theory of material
topology that provides local topological markers54–64. However, it is the only
currently known theoryof topology that preserves systemsparsity, i.e., ifH is
sparse, Lðx1 ;...;xd ;EÞ is sparse. Thus, unlike other local markers that typically
require projecting into an occupied subspace, yielding still-relatively-large
dense matrices, the calculation of local markers using the spectral localizer
can leverage advances in sparse matrix algorithms to realize substantial
numerical speedups. For example, finding a sparse matrix’s signature does
not require finding any of its eigenvalues, and can instead be found using
Sylvester’s law of inertia65,66.

Building the spectral FEM-localizer
The spectral localizer is used to study a system’s topology directly from its
equations of motion, i.e., its master equation. For example, it is straight-
forward to apply the spectral localizer framework to tight-binding
models26,42,44,46–53 where the position operators are diagonal matrices with
entries being the spatial position (x1,…, xd) of the model’s sites, and H the
tight-binding Hamiltonian. However, the spectral localizer is not limited to
such approximate descriptions of physical system. Instead, so long as a
system admits a discretization of some form (or some other method for
generating a bounded matrix description of the system), the matrix of its

discretized master equation can be inserted into the spectral localizer
[Eq. (2)], where practical parameters and geometry can be used.With such a
choice of discretization, the entries of the position matrices Xj can then be
chosen as the gridmesh positions fromdiscretization of themaster equation
and the Hamiltonian matrix H can be chosen as being any matrix whose
eigenvector is a solution of the master equation, namely a matrix whose
eigenproblem is physically meaningful in order to have a relevant joint-
spectrumproblem. As such, for the study of the topology in physical system
within the spectral localizer framework, no further approximation is
required beyond the discretization of the master equation, yielding a
potentially more accurate description of a system’s topology.

The photonic master equation. The master equations for photonic
systems are given by Maxwell’s equations. Assuming that the materials
used are linear and time-independent, the electromagnetic fields can be
written in a time-harmonic form e−iωt such that a photonic system can be
described by the source-free Maxwell’s equations

∇×EðxÞ ¼ iω�μðxÞHðxÞ; ð6Þ

∇×HðxÞ ¼ �iω�ϵðxÞEðxÞ; ð7Þ

∇ � ½�ϵðxÞEðxÞ� ¼ 0; ð8Þ

∇ � ½�μðxÞHðxÞ� ¼ 0; ð9Þ

where ω is the angular frequency, E(x) and H(x) are the electric and mag-
netic fields, and �ϵðxÞ and �μðxÞ are the permittivity and permeability tensors.
Previously, the spectral localizer framework has been applied to describe the
topology of 2Dphotonic crystals40,41,45. These prior studies took advantage of
finite-difference discretizations of Maxwell equations [Eqs. (6) and (7)] to
automatically satisfy the divergence-free condition [Eqs. (8) and (9)].
However, this approach is not easily scalable, as it requires a uniformmesh
and therefore requires very large matrices for the simulation of realistic
designs of 3D systems.

Instead, here, we use the finite-element method (FEM) for a more
general approach to any physical system described by a master equa-
tion. The key advantage of FEM-localizer framework is that it allows for
a much coarser meshing and therefore reduces the size of the matrices
involved. Moreover, the method easily incorporates physical processes
with different characteristic length scales, where additional equations of
motion can be included to described the relevant processes and their
couplings. For example, dispersion can be described by introducing
auxiliary equations for the material’s internal degrees of freedom
responsible for this effect67 that are then coupled toMaxwell’s equations
[Eqs. (6)–(9)]. To best make use of the FEM approach for photonic
systems, here we use the Helmholtz equation for the electric field E(x),
derived from Eqs. (6)–(9)

∇× �μ�1ðxÞ∇×EðxÞ� �� ω2�ϵðxÞEðxÞ ¼ 0; ð10Þ

as the master equation to probe the topology in photonic systems.

Overview of the finite-element method. In this section, we briefly
outline FEM discretizations, with a focus on the relevant information for
then incorporating the resultant equations of motion into the spectral
localizer framework. Amore detailed description of FEM can be found in
FEM textbooks24.

The FEM discretization starts by reformulating the master
equation into its weak form, where the differential equation is no
longer satisfied exactly at every point of the mesh. The weak form of
the master equation consists in turning the differential equation into
an integral equation, via the method of integration by parts, to
improve numerical stability. Indeed, the differentiation of the
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solutions of the master equation may be limited at the boundaries of
the simulation domain or at some material interfaces, where a jump in
their values can be observed. The weak form is therefore obtained by
multiplying the master equation with a weight function α(x) and by
evaluating the overlap integral over the simulation regionΩ. The weak
form for the master equation Eq. (10) is then

R
Ω �μ�1ðxÞ∇×EðxÞ� � � ∇× αðxÞð Þdx

�ω2
R
Ω�ϵðxÞEðxÞ � αðxÞdx ¼ 0:

ð11Þ

The solution vector, E(x) for Eq. (10), is decomposed in terms of the
shape functions wn

EðxÞ ¼
X
n

EnwnðxÞ; ð12Þ

with unknown weights En located along the extended mesh nodes [see for
example the green crosses in Fig. 2]. Importantly, these shape functions are
chosen to satisfy the desired properties of the system’s equation. For
instance, when considering Maxwell’s equations, it is imperative to fulfill
both the divergence-free conditions and interface conditions. In this
context, the so-called curl elements68 can be chosen as shape functions.
These curl elements inherently satisfy thedivergence condition [Eqs. (9) and
(8)] as they are divergence-free functions. Furthermore, the curl elements
enforce the criterion that the tangential component of the electric fieldmust
be continuous while the normal component can be discontinuous across
interfaces, in accordance with the interface conditions set by the Maxwell’s
equations.

Altogether, the solution to the master equation is obtained by solving
the FEM-discretized master equation after performing numerical integra-
tion, which can bewritten as a systemof linear equations in thematrix-form

Heff ðωÞΨ ¼ 0; ð13Þ

where Ψ ¼ ð. . . ; En; . . .ÞT is the solution vector, the electric field E(x), at
frequency ω. The magnetic field H(x) can then be derived using Eq. (6).
Notably, Heff(ω) is a good candidate to be an effective Hamiltonian for
insertion into the spectral localizer as the eigenvectorwith zero eigenvalue is
a solution to the master equation.

Incorporatingboundary conditions. Although there aremany available
implementations of FEM, here we describe themethodology based on the
FEM discretization from the commercial software COMSOL
MULTIPHYSICS69 as this is a widely used software acrossmany different
physical platforms. Using details from this specific FEM implementation,
we then show how to develop a Hamiltonian that incorporates the sys-
tem’s boundary conditions.

Using the Eigenvalue Solver algorithm in COMSOL, the FEM dis-
cretization leads to solving the following set of equations for the solution
vector in the extended meshΨ,

Heff ðωÞΨ þ NFΛ ¼ 0; ð14Þ

NΨ ¼ 0; ð15Þ

whereNF andN are respectively the constraint force Jacobianmatrix and the
constraint Jacobian matrix, and Λ is a vector made of the Lagrange multi-
pliers for the boundary conditions and fictitious degrees of freedom. In
Eqs. (14) and (15), Heff is a matrix-valued function

Heff : ω ! ð�iωÞ2M � ð�iωÞC þ K; ð16Þ

where ω 2 C,M is the mass matrix, C is the damping matrix, and K is the
stiffness matrix. The real part of ω corresponds to the solution’s angular
frequencywhile its imaginarypart is its decay rate. In sum,Eqs. (14) and (15)
contain the discretized weak form of the master equation [see the term
Heff(ω)Ψ in Eq. (14)], as well as additional terms that account for the
boundary conditions.

In order to remove the additional terms that incorporate the boundary
conditions and solve an equation that resembles Eq. (13), the constraint
equation is first solved. Namely, Eq. (15) is solved as

NΨd ¼ 0 ð17Þ

withΨd = 0. Then

Ψ ¼ Ψd þ NullΨc

� � ð18Þ

is a solution of Eqs. (14) and (15). Equations (14) and (15) are therefore
reduced to find Ψc, the solution of the eliminated matrix equation

Heff ;cðωÞΨc ¼ 0 ð19Þ

where Heff,c is the matrix-valued function defined as

Heff ;cðωÞ ¼ NullfTHeff ðωÞNull ð20Þ

withNull andNullf being composedof basis vectors spanning the null space
of N and NT

F , respectively,

N Null ¼ 0; ð21Þ

NullfTNF ¼ 0: ð22Þ

Physically, the eliminated matrix equation [Eq. (19)] considers the elimi-
nated effective Hamiltonian Heff,c(ω) where all the degrees of freedom
involved in the boundary conditions have been accounted for and removed.
Consequently, Heff,c(ω) is the effective Hamiltonian compatible with the
spectral localizer framework, and not Heff(ω).

The spectral localizer via finite-element method. As the eigenvector
of Heff,c(ω) with eigenvalue zero is physically meaningful because it
corresponds to a solution of eliminated Maxwell’s equations, Heff,c(ω)
can be chosen to be the effective Hamiltonian matrix in the spectral
localizer framework. Accordingly, the position matrices Xj,c need to be
constructed in the same vector space asHeff,c(ω). In the non-eliminated
vector space, the positionmatricesXj are diagonalmatrices with entries
corresponding to the j-th coordinate position of the n-th FEM degrees

Fig. 2 | Position coordinate of the degrees of freedom used for constructing the
positionmatrices within the finite-elementmethod discretization. a Schematic of
the discretization into finite elements of the two-dimensional (2D) simulation
domain composed of a single dielectric rod (red shaded region) at the center of a
triangular unit cell. b Zoom-in of (a) where the mesh nodes and extended mesh
nodes are depicted using blue and greenmarkers, respectively. In this context, the 2D
structure is solved for transverse magnetic polarization (Hz ≠ 0) and the shape
function used are the curl elements. The position of the extended mesh nodes
corresponding to the unknown weighting coefficient En are located at (xn, yn).
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of freedom xj,n, i.e., the positions of the extended mesh nodes [see for
example the green crosses in Fig. 2],

Xj ¼
. .
.

xj;n

. .
.

0
BBB@

1
CCCA: ð23Þ

The position matrices in the eliminated spaceXj,c are therefore obtained by
projecting Xj onto the eliminated space via Null and Nullf as

Xj;c ¼ NullfTXjNull : ð24Þ

Given the unique mathematical and computational complexities asso-
ciated with using a FEM, there are several modifications that must be
made to the spectral localizer framework [Eq. (2)] to probe the systems
local topology. First, to probe the topology at spatial position coordinate
(…, xj,…), xj needs to be expressed in the eliminated space in accordance
to the position matrix Xj,c. This can be implemented by directly pro-
jecting (Xj− xjI), appearing in Eq. (2), onto the eliminated space,
ðXj � xjIÞc ¼ NullfT ðXj � xjIÞNull , and by probing at spatial position
zero namely λ = (0,…, 0, E). Second, as only the zero eigenvalue ofHeff,c

corresponds to a physically meaningful solution of the Maxwell’s equa-
tions, the localizer has to be probed at λ = (…, 0), namely the effective
HamiltonianHeff(ω) itself carries the information about the frequency ω
at which the system’s topology is being classified. Thus, for shorthand
notation, the topology at location (x1,…, xd, ω) is probed using the
spectral FEM-localizer defined as

L̂ðx1;...;xd ;ωÞðX1;c; . . . ;Xd;c;Heff ;cÞ ¼
Lð0;...;0;0ÞðX1;c � x1Ic; . . . ;Xd;c � xdIc;Heff ;cðωÞÞ;

ð25Þ

with

Ic ¼ NullfTNull : ð26Þ

For example, for a 2DHermitian system, the spectral FEM-localizer can be
writtenusing thePauli spinmatrices as the choice ofClifford representation,
yielding

L̂ðx;y;ωÞðXc;Yc;Heff ;cÞ ¼
Heff ;cðωÞ κðXc � xIcÞ � iκðYc � yIcÞ

κðXc � xIcÞ þ iκðYc � yIcÞ �Heff ;cðωÞ

 !
;

ð27Þ

and the local topological marker, for class A systems, at position (x, y) and
angular frequency ω is obtained from

CL
ðx;y;ωÞðXc;Yc;Heff ;cÞ ¼

1
2
sig L̂ðx;y;ωÞðXc;Yc;Heff ;cÞ
h i

:
ð28Þ

Altogether, the effective Hamiltonian Heff,c(ω) solves the system’s
master equation rigorously with the only approximation being the
discretization, taking into account all the possible processes in the
physical system. The retained information in the effective Hamilto-
nian therefore gives us a more rigorous description of the topology in
the physical system. For instance, in photonic systems, this approach
can directly incorporate the radiative processes overlooked in the
literature by using the non-Hermitian line-gap extension of the
spectral localizer49. Instead of using the Hermitian localizer [Eq. (27)],

the non-Hermitian spectral localizer for classifying 2D non-
Hermitian (lossy) systems is now written as

L̂
ðNHÞ
ðx;y;ωÞðXc;Yc;Heff ;cÞ ¼

Heff ;cðωÞ κðXc � xIcÞ � iκðYc � yIcÞ
κðXc � xIcÞ þ iκðYc � yIcÞ �Heff ;cðωÞy

 !
;

ð29Þ

and the local topologicalmarker at position (x, y) and angular frequencyω is
obtained from

CL;ðNHÞ
ðx;y;ωÞ ðXc;Yc;Heff ;cÞ ¼

1
2
sigR L̂

ðNHÞ
ðx;y;ωÞðXc;Yc;Heff ;cÞ

h i
:

ð30Þ

where sigR denotes the matrix’s difference between its number of positive
and negative eigenvalues with respect to their real part. Additionally, the
localizer gap becomes

μC;ðNHÞ
ðx;y;ωÞ ðXc;Yc;Heff ;cÞ ¼

min Re σ L̂
ðNHÞ
ðx;y;ωÞðXc;Yc;Heff ;cÞ

� �h i��� ���n o
:

ð31Þ

Notably,ω can be complex in the lossy system and can include the damping
term for calculating the local markers. However, by using the line-gap
extension of the spectral localizer for 2D class A systems, the imaginary part
of ω should not matter in the calculation of the topology49.

Finally, it is emphasized here that the matrices for constructing the
spectral localizer can be readily obtained from COMSOL once the Eigen-
value Solver study has been run, regardless of themodule used: thematrices
M,C,K, Null, and Nullf for determining Heff,c and the spatial position
(…, xj,…) of the extended mesh nodes can be directly accessed from the
COMSOL functions inMATLAB70. The spectral FEM-localizer framework
can therefore be immediately applied to the wealth of examples and designs
considered by the COMSOL community.

Example of 2D photonic Chern structures
As an initial demonstration of the versatility of the spectral FEM-localizer
framework, we consider two fundamental examples in topological photo-
nics: a 2D Haldane photonic crystal heterostructure25 that is the canonical
photonicChern insulator [Fig. 3], and a 2Dphotonic quasicrystal71 that is an
aperiodic system where topological band theory cannot be applied [Fig. 4].
In both cases, the photonic system is first described by the full-wave
Helmholtz equation (using theWave Optics module) and then discretized
using FEM via COMSOL MULTIPHYSICS. Finally, the spectral FEM-
localizer is constructed from the Eigenvalue Solver study andused to classify
the systems’ topology.

2D Photonic Chern crystal. For a first example, we focus on the 2D
Haldane photonic heterostructure25 shown in Fig. 3a. Here, the Haldane
heterostructure ismade of two triangular lattices of lattice constant awith
perfect electric conductor (PEC) boundary conditions, and we are con-
sidering the topology of the transverse magnetic modes (Hz ≠ 0). The
inner lattice is a topologically non-trivial insulator composed of dielectric
rods, �ϵjj ¼ 14 for j = x, y, z, with radius r = 0.37a embedded in a gyro-
electric background, �ϵjj ¼ 1;�ϵxy ¼ �0:4i, to break time-reversal sym-
metry. The outer lattice is a topological trivial insulator composed of air
rods, �ϵjj ¼ 1, of radius r = 0.35a in a dielectric background with �ϵjj ¼ 5:5.
The interface between the two topological distinct lattices yields a
topological edge state that can be seen in the ribbon band structure [Fig.
3b] and from the local density of states at ω0 = 0.37[2πc/a] [Fig. 3d].

The spectral FEM-localizer and local Chernmarker in Eq. (27) and Eq.
(28), respectively, can be used to diagnose the topology of this lossless 2D
system.However, one should note that the eliminated effectiveHamiltonian
Heff,c is non-Hermitian due to the projection onto the eliminated space.
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Nevertheless, the non-Hermitian part is found to be negligible and only the
Hermitian part is kept inHeff,c asHermitianmaterials and lossless boundary
conditions have been used. The spectrum of the spectral FEM-localizer
σðL̂ðx;y0 ;ω0ÞÞ and the localChernnumberCL

ðx;y0 ;ω0Þ along thepathdepicted by
the green line in Fig. 3a at y0 = 0 and frequencyω0 = 0.37[2πc/a] are shown
in Fig. 3c, demonstrating the local topological picture of the heterostructure.
As expected fromtopological band theory, inside the topological bandgapat
aroundω0 = 0.37[2πc/a], the inner lattice is topologicalwithCL = 1while the
outer lattice is trivial with CL = 0. Therefore, the spectral FEM-localizer
correctly captures the change of topology as demonstrated by the eigenvalue
crossing with respect to zero of the spectrum of L near the heterostructure’s
interface.

2D Photonic Chern quasicrystal. As a second example, we investigate
the topology of amagnetooptic 2Dphotonic quasicrystal surrounded by a
homogeneous material, again for transverse magnetic modes (Hz ≠ 0).
Notably, this example cannot be classified using topological band theory
as the system is not periodic and therefore does not possess a band
structure. Moreover, the quasicrystal is surrounded by a homogeneous
material that is gapless rather than gapped (or insulating), yielding an ill-
defined notion of bulk topological invariant and topological robustness.
The topological quasicrystal is constructed from a Penrose tiling72, with
the rhombuses having sides of length a and where the dielectric rods are
positioned on the vertices of the tiling71, as shown in Fig. 4a. The photonic
quasicrystal is composed of dielectric rods with permittivity �ϵjj ¼ 14 and
radius r = 0.18a, embedded in a gyro-electric background, �ϵjj ¼ 1;�ϵxy ¼
�0:4i to break time-reversal symmetry, and PEC boundary conditions
are used. In this quasicrystal heterostructure [Fig. 4a], the identification
of any edge state resonances via the local density of states [Fig. 4f] is
obscured by the presence of the bulk states present in the homogeneous
material surrounding the quasicrystal. Instead, the edge states can be
identified from the local density of states only when the surrounding
homogeneousmaterial is truncated, as shown Fig. 4c and d. The edge and
bulk spectra of the photonic quasicrystal [Fig. 4b] can also be obtained

using, respectively, PEC and (continuous) periodic boundary conditions
in a polygonal geometry to simulate the photonic system both with and
without boundaries (see Supplemental Material).

Similar to the crystalline example, the spectral FEM-localizer and local
marker in Eq. (27) and Eq. (28) are used to probe the topology of this
photonic system once the non-Hermitian part is removed from the elimi-
nated effective Hamiltonian Heff,c. Figure 4e shows the spectrum of the
FEM-localizer σðL̂ðx;y0 ;ω0ÞÞ and the local Chern number CL

ðx;y0 ;ω0Þ as the
probe location is varied, revealing the topology despite the system’s aper-
iodicity and the lack of a surrounding insulator. In particular, there is a
crossing of the spectrum of the localizer near the boundary of the structural
interface, and thus a change of the local Chern number as the probe coor-
dinate is moved from the trivial homogeneous material to the center of the
quasicrystal along the green line depicted in Fig. 4a, and atω0 = 0.37[2πc/a].
The location where the local index changes, associated to a vanishing
localizer gap, is also an indication of the location of the topological edge state
[Eq. 4], which cannot be resolved from the system’s local density of states
[Fig. 4f].A similar plot for the spectrumof the spectral localizer and the local
Chern number can be realized along the frequency axis, as shown in the
Supplemental Material, demonstrating some range of frequencies ω for
which the quasicrystal is topologically non-trivial. As such, this example
highlights how the spectral FEM-localizer is capable to identify the topology
of the system without the need of a band structure or a bulk band gap, and
how the location of the topological edge states can be explicitly determined
from the vanishing of the localizer gap.

Fig. 3 | Probing of the local topology in a two-dimensional photonicChern crystal
system. aDesign of the 2DphotonicChern heterostructure. The inner parallelogram
is a non-trivial topological lattice with lattice constant a made of dielectric rods,
�ϵjj ¼ 14 for j = x, y, z, with radius r = 0.37a embedded in a gyro-electric background,
�ϵjj ¼ 1, �ϵxy ¼ �0:4i, that breaks time-reversal symmetry. The outer lattice is a
topologically trivial lattice with the same lattice constant a composed of air rods,
�ϵjj ¼ 1, with radius r = 0.35a in a dielectric background with �ϵjj ¼ 5:5. b Ribbon
band structure along the Γ−K direction for the transverse magnetic modes (Hz ≠ 0),
with a topological edge mode present around ω0 = 0.37[2πc/a]. c Spectrum of the
FEM-localizer σðL̂λ¼ðx;y0 ;ω0ÞÞ normalized by 10−4∥Heff,c(ω0)∥ and the local Chern
number CL

λ¼ðx;y0 ;ω0Þ along the green line in (a) at y0 = 0 and frequency ω0 = 0.37[2πc/

a], with κ ¼ 1:5 10�4 kHeff ;cðω0Þk = kXc k
h i

. d Local density of states (LDOS) for

the Hz component of the field at ω0 = 0.37[2πc/a].

Fig. 4 | Probing of the local topology in a two-dimensional photonic Chern
quasicrystal system. aDesign of the photonic Chern quasicrystal based on aPenrose
tiling. The rhombuses composing the Penrose tiling have sides of length a, and the
dielectric rods are located at the vertices of the Penrose tiling in a gyro-electric
background, �ϵjj ¼ 1, �ϵxy ¼ �0:4i, with radius r = 0.18a. b Spectra of the photonic
system along the real axis, with continuous periodic (PBC) and with perfect electric
conductor (PEC) boundary conditions to simulate the system without and with
edges, respectively. cTruncated design of the photonic Chern quasicrystal in (a) with
perfect electric conductors (PEC) boundary conditions. d Local density of states
(LDOS) for the Hz component of the field at ω0 = 0.37[2πc/a] with the geometry in
panel (c). e Spectrum of the FEM-localizer σ L̂λ¼ðx;y0 ;ω0Þ

� �
normalized by

10−4∥Heff,c(ω0)∥ and the local Chern numberCL
λ¼ðx;y0 ;ω0Þ along the green line in (a) at

y0 = 0 and frequency ω0 = 0.37[2πc/a], with κ ¼ 1 10�4 kHeff ;cðω0Þk = kXc k
h i

.
f Local density of states (LDOS) for theHz component of the field atω0 = 0.37[2πc/a]
with the geometry in panel (a).
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Photonic Chern slab
Photonic structures are inherently 3D, and as such the 2D photonic designs
extensively studied in the literature and described in the previous section are
only approximations to actual photonic slabs realized experimentally.While
there are standardmethods for developing 3D photonic crystal slabs whose
resonance band structures are quantitatively similar to the band structures
of 2D photonic crystals73, these methods only approximate the Hermitian
portion of the band structure, not the radiative portion. Moreover,
approximating radiative losses due to a system’s environment as material
absorption within the system is uncontrolled, as this is fundamentally
relocating degrees of freedom that were outside of a structure to be inside of
it. Indeed, this is a particularly problematic approximation for topological
systems, whose primary features are boundary-localized states—relocating
degrees of freedom changes what it means for a state or resonance to be
localized. Therefore, out-of-plane radiative losses, an inherent aspect of
photonic slabs, have been neglected in previous theoretical treatments of
topological photonics, as the radiative loss cannot be accounted for using a
band theoretic approach.Nevertheless, aswehave already seen in the case of
the quasicrystal, the spectral FEM-localizer allows to diagnose the topology
beyond the scope of topological band theory.Here,we show that the spectral
FEM-localizer can be used to classify the topology of photonic crystal slabs
and directly incorporate out-of-plane radiative losses using radiative
boundary conditions.

As an example illustrating the probing of the topology in photonic
slab while accounting for the out-of-plane radiative loss, we consider a
free-standing photonic crystal slab embedded in air, as shown in Fig. 5a.
This is the 3D slab version of the Haldane photonic heterostructure
studied in Fig. 3a, with PEC on the x- and y-boundaries and a radiative
boundary condition implemented through perfectly matched layers
(PML) on the z-boundaries. The parameters used are the same as in the
Chern heterostructure example [Fig. 3a] except that now the back-
ground is a slab of thickness t = 0.5a embedded in air, and the rods have
the same finite height t = 0.5a. The topological edge state can be seen in

the ribbon band structure [Fig. 5b] and from the local density of states at
z = 0 and at ω0 = 0.42[2πc/a] [Fig. 5d].

As the system is 3D and in class A in the Altland-Zirnbauer
classification35–38, the topology for the 2D topological edge state in the slab
can be classified using an integer invariant such as the Chern number.
Within the spectral localizer framework, the topology is diagnosed by dis-
regarding the z-direction (i.e., all mesh vertices are retained, but their
coordinates is reduced (x, y, z)→ (x, y)), performing a version of dimen-
sional reduction to enable the calculation of a strong 2D invariant of a 3D
system. Physically, this is equivalent as looking at the change of topology as
we move in the (x, y)-plane, irrespective of the z-coordinate. Despite the
removal of the z-direction, all the information from the 3D geometry,
including the out-of-plane radiative loss, is retained for the assessment of the
topology as the effective Hamiltonian Heff,c is derived from the full 3D
geometry. In other words, even though the system is 3D, Eqs. (29) and (30)
can still be used— the Xc, Yc, and Heff,c matrices all contain information
about the full 3D system, and the Chern number does not depend on the
position matrix Z or the z-coordinates. This is because the 2D Chern
number is still a strong topological invariant in a 3D system; and calculating
it usingXc and Ycmeans we are looking at edge states around the boundary
in the (x, y)-plane. Thus, the 2D non-Hermitian FEM-localizer in Eq. (29)
can be used to identify the topology in the slab with radiative boundary
conditions, giving an accurate probing of the topology in the photonic slab
where all the possible processes are accounted for.

The topology is studiedby looking at the spectrumof the spectral FEM-

localizer σðL̂ðNHÞ
ðx;y0;ω0ÞÞ along the green path in Fig. 5a at y0 = 0, and at the

(incomplete) band gap around ω0 = 0.42[2πc/a], as shown in Fig. 5b. The
plot demonstrates anet crossing in the spectrumwith respect to zero [see red
arrow in Fig. 5b], indicating a change of the signature of the spectral FEM-
localizer [Eq. (30)], hence a change of topology, near the boundary between
the outer and inner lattices, similar to what is observed in Fig. 3c. However,
the topological protection given by the localizer gap now takes into account
the radiative losses of the topological edge slab state, and as such the pro-
tection is weaker than would be predicted from the 2D band structure.

Discussion
Using the operator-based approach of the spectral localizer, we have
developed a general framework for studying the topology in realistic pho-
tonic structures directly from the discretizedmaster equations of the system
using finite-elementmethods (FEM). In particular, we studied the topology
in photonic systems derived directly from the full-waveMaxwell equations.
Using the photonic Chern insulators and the photonic Chern quasicrystal,
we have demonstrated the ability of the proposed spectral FEM-localizer
framework to correctly capture the local topology in photonic topological
materials. Moreover, the framework have been applied to a photonic Chern
slab predicting genuine topological protection of the topological edge slab
statewhen taking into account possible radiative loss of the slab state. As the
radiative feature of optical systemsplay a significant role for a broad range of
photonics applications, we expect that the spectral FEM-localizer’s ability to
classify the topology of photonic systems will be useful for developing next-
generation devices, including topological metasurfaces which uses topolo-
gical boundary modes to control radiation, scattering and emission27–31.
Looking forward, we anticipate the generality of the framework to be of
practical use for systems in any of the ten Altland-Zirnbauer symmetry
classes35–38 as well as in topological crystalline insulators41,45, and for tackling
topological problems in other complex physical platforms such as in
acoustic systems74, plasmonic systems67,75,76, and in polaritonic systems77–79.

Code availability
The code that support the findings of this study are available from the
corresponding author upon reasonable request.
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Fig. 5 | Probing of the local topology in a photonic Chern slab system. aDesign of
the photonic Chern slab. The inner parallelogram is a non-trivial topological lattice
with lattice constant a made of dielectric rods, �ϵjj ¼ 14 for j = x, y, z, with radius
r = 0.37a and height t = 0.5a embedded in a gyro-electric slab, �ϵjj ¼ 1, �ϵxy ¼ �0:4i,
with thickness t = 0.5a. The outer lattice is a topologically trivial lattice with the same
lattice constant a, composed of air rods, �ϵjj ¼ 1, with radius r = 0.35a and height
t = 0.5a in a dielectric slab, �ϵjj ¼ 5:5, with thickness t. bRibbon band structure along
the Γ–K direction for the transverse magnetic modes (Hz ≠ 0), with the topological
mode present aroundω0 = 0.42[2πc/a]. The shaded region depicts those frequencies
and wavevectors that are at, or above, the light line of the surrounding air. The red
line depicts the light line, ω = c∣k∣. c Spectrum of the FEM-localizer σ L̂

ðNHÞ
λ¼ðx;y0 ;ω0Þ

� �
normalized by 10−4∥Heff,c(ω0)∥ along the green line in (a) at y0 = 0 and frequency
ω0 = 0.42[2πc/a], with κ ¼ 1:5 10�4 kHeff ;cðω0Þk = kXc k

h i
.d Local density of states

(LDOS) for the Hz component of the field at z = 0 and at ω0 = 0.42[2πc/a].
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