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Outline

▪ An operator-based approach to topological physics
▪ Uses a framework called the “spectral localizer”

▪ Emergence of Hofstader’s butterfly

▪ Identifying fragile topology

▪ Classifying topology in non-linear systems
▪ Topological dynamics

▪ Application directly to Maxwell’s equations
▪ Incorporating radiative boundaries
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Topology from invariants

……

Hasan and Kane, Rev. Mod. Phys. 82, 3045 (2010)

2D system with broken Time Reversal symmetry

Review: Chern insulators

Can predict these boundary phenomena 
from a calculation in the bulk

➢ Bulk-boundary correspondence

Chern number: (a “topological invariant”)

𝐶𝑛 =
1

2𝜋


𝐵𝑍

𝜕𝐴𝑦
𝑛

𝜕𝑘𝑥
−

𝜕𝐴𝑥
𝑛

𝜕𝑘𝑦
ⅆ2𝐤 ∈ ℤ

Berry Connection:
𝐀𝑛 𝐤 = ⅈ 𝜓𝑛𝐤 𝛻𝐤 𝜓𝑛𝐤

Bloch eigenstates
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Why make photonics topological?

Topological lasers

➢ Robust against disorder
➢ Efficient phase locking

Bahari et al., Science 358, 636 (2017)

Bandres et al., Science 359, 1231 (2018)

Harari et al., Science 359, eaar4003 (2018)

Zeng et al., Nature 578, 246 (2020)

Dikopoltsev et al., Science 373, 1514 (2021)
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Why make photonics topological?

Routing of quantum information

Barik et al., Science 359, 666 (2018)

Mittal et al., Nature 561, 502 (2018)

Chen et al., Phys. Rev. Lett. 126, 230503 (2021)

Dai et al., Nat. Photonics 16, 248 (2022)
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Why make photonics topological?

Creating cavities for light-matter interaction

Ota et al., Optica 6, 786 (2019)

Zhang et al., Light Sci. Appl. 9, 109 (2020)

Smirnova et al., Phys. Rev. Lett., 123, 103901 (2019)

Kruk et al., Nano Lett. 21, 4592 (2021)
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Challenges with invariants

Where band theory can be applied, band theory is awesome.

Where is band theory not applicable (or not useful)?

1) Material lacks translational symmetry
▪ Quasicrystals
▪ Amorphous materials
▪ Disorder
▪ Finite size effects

2) Heterostructure lacks a complete or incomplete band gap
➢ Band theory is applicable, but…

➢ Not always clear how to calculate the invariant
➢ No measure of protection

3) System is non-linear
▪ Localized response breaks translational symmetry
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Challenges with invariants in photonics

We’d like nanophotonic Chern 
insulators

➢ Non-reciprocal edge states

But… it’s hard to break time-reversal 
symmetry

Vanishing bandgap 
(42 pm)

Bahari et al., Science 358, 636 (2017)

Can topological phenomena still 
manifest without a complete band 

gap?

➢ Chiral edge resonance?

Related challenge: photonic crystal slabs 
and metasurfaces radiate out-of-plane

Can resonances and bound states be 
mixed in formula for topological 

invariants?

𝐶𝑛 =
1

2𝜋
න

𝐵𝑍

𝛻𝐤 × ⅈ 𝜓𝑛𝐤 𝛻𝐤 𝜓𝑛𝐤 ⅆ2𝐤



10

Challenges with invariants in photonics

No current theory for finite systems

How close can two topological cavities 
be, while maintaining protection?

Kim et al., Nat. Commun. 11, 5758 (2020)

Or how close can two chiral edge states be in 
a topological Chern system?

Is there a local measure of 
topological protection?

Estimate:

𝑒−
𝑥
𝐿

Decay length 𝐿 set by 
band gap width Δ𝐸
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Photonic non-linearities are local

Lumer et al., Phys. Rev. Lett. 111, 

243905 (2013)

Mukherjee and Rechtsman, Science 368, 856 (2020)

Jürgensen et al., Nature 596, 63 (2021)

Jürgensen et al., Nat. Phys. 19, 420 (2023) Maczewsky et al., Science 370, 701 (2020)

Flower et al., Science 384, 1356 (2024)

Leykam and Chong, Phys. Rev. Lett. 

117, 143901 (2016)
Can a topological invariant be 

defined without a bulk?
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Wu and Hu, Phys. Rev. Lett. 114, 223901 (2015)

Local real-space approaches to material topology

𝑞𝑥𝑦 = 0

𝑞𝑥𝑦 = 1

Kruk et al., Nano Lett. 21, 4592 (2021)

Kitaev:

𝜈 𝑃 = 12𝜋ⅈ 

𝑗∈𝐴



𝑘∈𝐵



𝑙∈𝐶

𝑃𝑗𝑘𝑃𝑘𝑙𝑃𝑙𝑗 − 𝑃𝑗𝑙𝑃𝑙𝑘𝑃𝑘𝑗

Kitaev, Ann. Phys. 321, 2 (2006)

Mitchell et al., Nat. Phys. 14, 380 (2018)

Bianco–Resta:

ℭ 𝐫 = −2𝜋ⅈ න ෨𝑋 𝐫, 𝐫′ ෨𝑌 𝐫′, 𝐫 − ෨𝑌(𝐫, 𝐫′) ෨𝑋(𝐫′, 𝐫) ⅆ𝐫′

෨𝑋 𝐫, 𝐫′ = න 𝑃 𝐫, 𝐫′′ 𝑥′′𝑃 𝐫′′, 𝐫′ ⅆ𝐫′′

Bianco and Resta, Phys. Rev. B 84, 241106(R) (2011)

Projectors are difficult to calculate 
for real systems

Neither framework has a local 
measure of topological protection.
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What is a Wannier basis? (and why should you care?)

Bloch eigenstates are inherently extended across a crystal, with well-defined 𝐤:

𝜓𝑛𝐤 𝐱 = 𝑒𝑖𝐤∙𝐱𝑢𝑛𝐤(𝐱)

But, if we want to work with something in real space:

𝜙𝑛𝐑 𝐱 =
1

𝑁


𝐤

𝑒𝑖𝜃(𝐤)𝑒−𝑖𝐤∙𝐱𝜓𝑛𝐤 𝐱

Choose 𝜃(𝐤) such that 𝜙𝑛𝐑 𝐱  is localized

⟹ Maximally localized Wannier functions

𝜓𝑛𝐤0
𝐱

𝜓𝑛𝐤1
𝐱

𝜓𝑛𝐤2
𝐱

𝜙𝑛0 𝐱

𝜙𝑛1 𝐱

𝜙𝑛𝟐 𝐱

Marzari et al., Rev. Mod. Phys. 84, 1419 (2012)

Fourier transform of a band 
with a gauge, i.e., 𝜃(𝐤)
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Implications of topology on the Wannier basis

Systems with non-trivial Chern numbers DO NOT possess a complete localized Wannier basis.

𝐶𝑛 =
1

2𝜋ⅈ


𝐵𝑍

𝜕𝐴𝑦
𝑛

𝜕𝑘𝑥
−

𝜕𝐴𝑥
𝑛

𝜕𝑘𝑦
ⅆ2𝐤 ≠ 0 ⟺

This is an if and only if statement

➢ No complete localized Wannier basis necessitates a non-trivial Chern number.

This generalizes to many other classes of topology

Example: No localized Wannier basis that respects time-reversal symmetry 
  ⟺ non-trivial Kane-Mele invariant (Quantum spin Hall)

Brouder et al., Phys. Rev. Lett.

98, 046402 (2007)

Soluyanov and Vanderbilt, 

Phys. Rev. B 83, 035108 (2011)
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Topology as “Wannierizability”

Instead of an invariant, “Does the system possess a complete Wannier basis?”
• Band gap stays open
• Symmetries are preserved

Can a lattice be continued to without violating?

If yes
➢ Trivial

If no
➢ Topological

In other words, “Can the system be permuted to an atomic limit?” 
 
 (and if multiple inequivalent limits exist, which one?)

➢ Can answer using a lattice’s band structure

➢ Topological quantum chemistry

Kitaev, AIP Conference Proceedings 1134, 22 (2009)

Hastings and Loring, Ann. Phys. 326 1699 (2011) 

Taherinejad et al., Phys. Rev. B 89, 115102 (2014)

Kruthoff et al., Phys. Rev. X 7, 041069 (2017)

Po et al., Nat. Commun. 8, 50 (2017)

Bradlyn et al., Nature 547, 298 (2017)
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Topology as an atomic limit

Instead of an invariant, “Can the system be permuted to an atomic limit?”

Can a lattice be continued to without violating?

If yes
➢ Trivial

If no
➢ Topological

[𝐻, 𝑋] ≠ 0

Can the 
operators

be continued to

𝐻 AL , 𝑋 AL = 0

without violating 
similar restrictions?

• Band gap stays open
• Symmetries are preserved
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Topology from operators

Theorem: Two invertible, Hermitian matrices 𝐿 and 𝐿′ can be connected by a path of invertible 
Hermitian matrices if and only if sig 𝐿 = sig 𝐿′

▪ sig(𝐿) is signature, the number of positive eigenvalues minus the number of negative ones.

Spectrum of 𝐿 Spectrum of 𝐿′

These matrices 
cannot

Connecting 
matrix becomes 
non-invertible

Spectrum of 𝐿 Spectrum of 𝐿′

These matrices 
can be so 
connected

0

Instead of an invariant, “Can the system be permuted to an atomic limit?”

“Can the system’s operators be permuted to be commuting?”
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Topology from operators

Theorem (Choi, 1988): If 𝑅 and 𝑆 are n-by-n matrices with 𝑅𝑆 = 𝑆𝑅, then

sig
𝑅 𝑆
𝑆† −𝑅

= 0

Theorem: Two invertible, Hermitian matrices 𝐿 and 𝐿′ can be connected by a path of invertible 
Hermitian matrices if and only if sig 𝐿 = sig 𝐿′

▪ sig(𝐿) is signature, the number of positive eigenvalues minus the number of negative ones.

How do these results help?
➢ 𝑅 → (𝐻 − 𝐸𝐼)
➢ 𝑆 → 𝜅(𝑋 − 𝑥𝐼) − ⅈ𝜅(𝑌 − 𝑦𝐼)

And the requirement that 𝑅𝑆 = 𝑆𝑅 becomes
 

𝐻 − 𝐸𝐼, 𝑋 − 𝑥𝐼 = 0 and 𝐻 − 𝐸𝐼, 𝑌 − 𝑦𝐼 = 0

Construct the 2D spectral localizer:

𝐿 𝑥,𝑦,𝐸 𝑋, 𝑌, 𝐻 =
𝐻 − 𝐸𝐼 𝜅 𝑋 − 𝑥𝐼 − ⅈ𝜅(𝑌 − 𝑦𝐼)

𝜅 𝑋 − 𝑥𝐼 + ⅈ𝜅(𝑌 − 𝑦𝐼) −(𝐻 − 𝐸𝐼)

  If sig(𝐿 𝑥,𝑦,𝐸 𝑋, 𝑌, 𝐻 ) = 0 for a given 𝐸, 𝑥, 𝑦, then 

    the system can be continued to the atomic limit at that point.
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Topology from operators

Measure of protection (i.e., a “local gap”)

𝜇 𝑥1,…,𝑥𝑑,𝐸
C = 𝜎min[𝐿 𝑥1,…,𝑥𝑑,𝐸 𝑋1, … , 𝑋𝑑 , 𝐻 ]

(smallest eigenvalue of 𝐿 𝑥1,…,𝑥𝑑,𝐸 )

Spectrum of 𝐿

0
𝜇C

Rigorously,

𝛿𝐻 < 𝜇𝐶

cannot change local topology

 (Weyl’s inequality)

Loring, Ann. Phys. 356, 383 (2015)

Loring and Schulz-Baldes, New York J. Math. 23, 1111 (2017)

Loring and Schulz-Baldes, J. Noncommut. Geom. 14, 1 (2020)

𝐿 𝑥,𝑦,𝐸 𝑋, 𝑌, 𝐻

= 𝜅 𝑋 − 𝑥𝐼  ⨂  𝜎𝑥 + 𝜅 𝑌 − 𝑦𝐼  ⨂ 𝜎𝑦 + 𝐻 − 𝐸𝐼  ⨂ 𝜎𝑧

Intuitively… what’s going on?

▪ 𝐻 and 𝑋, 𝑌 contain “orthogonal” information

▪ Pauli matrices (+ identity) form a basis for 2-
by-2 Hermitian matrices.

➢ Combination preserves the independent 
information in 𝐻 and 𝑋, 𝑌 while forming a 
single matrix.



20

What does this look like?

Topological heterostructure

Trivial 
material

Chern
material

Connection between chiral edge states and local gap closing? 

➢ YES!!! 

➢ Built-in bulk-boundary correspondence

➢ Gap closings necessitate nearby states of the Hamiltonian
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Topology for a gapless system?

D. Hsieh et al., Science 323, 919 (2009)

Bergman and Refael, Phys. Rev. B 82, 195417 (2010)

Junck et al., Phys. Rev. B 87, 235114 (2013)

“metallized Haldane model”

Found boundary-localized states

➢ Resistant to hybridization

➢ Robust against mild disorder
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Chern metal

“metallized Haldane model”

Ribbon band 
structure

No qualitative 
difference in 
LDOS at 𝐸 = 0

Can classify using 
the spectral localizer

Bergman and Refael, Phys. Rev. B 82, 195417 (2010)

Junck et al., Phys. Rev. B 87, 235114 (2013) AC and Loring, Phys. Rev. B 106, 064109 (2022)

Even though 𝐻 − 𝐸F𝐼 has eigenvalues at 0

𝐿 𝑥,𝑦,𝐸  can still be gapped!
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Disordered Chern metal

By retaining position information from 𝑋, 𝑌:

➢ Identify local gaps

➢Classify local topology

AC and Loring, Phys. Rev. B 106, 064109 (2022)
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Application to 2D electron gasses and artificial graphene

Artificial Graphene – 
 quantum well with added potential 𝑉ℎ

AlSb/InAs/AlSb

𝐸𝐹 ≈ 4𝑉ℎ

➢ System mostly behaves 
as 2D electron gas
➢ IQHE

𝐻 =
1

2𝑚∗ −ⅈℏ𝛻 + 𝑒𝐀 𝐱
2

+ 𝑉 𝐱 −
𝜇𝐵𝑔

ℏ
𝑠𝑧𝐵

Park et al., Nano Lett. 8, 2920 (2008)

Wunsch et al., New J. Phys. 10, 103027 (2008) Spataru, Pan, and AC, in press at Phys. Rev. Lett.

Added potential closes the 
Landau level gaps

Nevertheless, spectral localizer 
yields correct Hall resistivity
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Topological origins of pinned states

𝐿 𝑥,𝑦,𝐸 𝑋, 𝑌, 𝐻

= 𝜅 𝑋 − 𝑥𝐼  ⨂ 𝜎𝑥 + 𝜅 𝑌 − 𝑦𝐼  ⨂ 𝜎𝑦 + 𝐻 − 𝐸𝐼  ⨂ 𝜎𝑧

To probe system-level phenomena characterized 
by length 𝐿

𝜅 ∼
𝐸gap

𝐿

To probe antidot phenomena with diameter 𝐷

𝜅 ∼
𝐸gap

𝐷

 trading spectral resolution for spatial 
resolution
  → requires a larger 𝐸gap

Spataru, Pan, and AC, in press at Phys. Rev. Lett.
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Emergence of Hofstader’s butterfly as potential is turned on

Spataru, Pan, and AC, in press at Phys. Rev. Lett.
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Classifying fragile topology via matrix homotopy

Consider a finite 2D system with open boundaries

 Hamiltonian   𝐻
 Position operators   𝑋, 𝑌
  𝐻, 𝑋, 𝑌 ∈ 𝐌2𝑛(ℂ)

Fragile topology can be protected by 𝐶2𝒯 -symmetry

 𝐶2 – 180° rotation about out-of-plane axis
 𝒯 – Bosonic time-reversal symmetry, 𝒯2 = 𝐼

For a system with this symmetry

𝐶2𝒯 −1𝐻 𝐶2𝒯 = 𝐻
𝐶2𝒯 −1𝑋 𝐶2𝒯 = −𝑋
𝐶2𝒯 −1𝑌 𝐶2𝒯 = −𝑌

Define

 𝑀𝜌 = 𝐶2𝒯 −1𝑀† 𝐶2𝒯

after simplifying

 𝑀𝜌 = 𝐶2𝑀⊤𝐶2

𝜌 defines a real structure for the C*-
algebra formed by 𝐌2𝑛(ℂ)

 𝐻𝜌 = 𝐻
 𝑋𝜌 = −𝑋
 𝑌𝜌 = −𝑌

Lee, Wong, Vaidya, Loring, and AC, in submission.Ponor, Wikimedia Commons
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Classifying fragile topology via matrix homotopy

Define

 𝑀𝜌 = 𝐶2𝒯 −1𝑀† 𝐶2𝒯

after simplifying

 𝑀𝜌 = 𝐶2𝑀⊤𝐶2

𝜌 defines a real structure for the C*-
algebra formed by 𝐌2𝑛(ℂ)

 𝐻𝜌 = 𝐻
 𝑋𝜌 = −𝑋
 𝑌𝜌 = −𝑌

Lee, Wong, Vaidya, Loring, and AC, in submission.

In some basis,  𝜌 → ⊤

Can directly verify that the unitary

 𝑊 =
1

2
𝐶2 + ⅈ𝐼

yields

 𝑊𝑀𝜌𝑊† = 𝑊𝑀𝑊† ⊤

And thus

𝑊𝐻𝑊† ⊤
= 𝑊𝐻𝑊†

𝑊𝑋𝑊† ⊤
= −𝑊𝑋𝑊†

𝑊𝑌𝑊† ⊤
= −𝑊𝑌𝑊†

symmetric

skew symmetric
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Homotopy invariant of skew symmetric matrices

𝑇 =

0 𝛼1

−𝛼1 0
0 𝛼2

−𝛼2 0

⋱
⋱

0 𝛼𝑛

−𝛼𝑛 0

Skew symmetric —  𝑇⊤ = −𝑇

Pfaffian  —  Pf 𝑇 = 𝛼1𝛼2 ⋯ 𝛼𝑛

Determinant  —  det 𝑇 = Pf 𝑇 2

Well-defined sign

If we want to change sign Pf 𝑇

 while preserving 𝑇⊤ = −𝑇

⋱
0 𝛼𝑗

−𝛼𝑗 0
⋱

→

⋱
0 −𝛼𝑗

𝛼𝑗 0
⋱

0
Connecting 
matrix becomes 
non-invertible
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Classifying fragile topology via matrix homotopy

Form a (nearly) skew-symmetric spectral localizer

 𝐿 𝑥,𝑦,𝐸 𝑊𝑋𝑊†, 𝑊𝑌𝑊†, 𝑊𝐻𝑊† = 𝜅 𝑊𝑋𝑊† − 𝑥 ⊗ 𝜎𝑥 + 𝜅 𝑊𝑌𝑊† − 𝑦 ⊗ 𝜎𝑧 + 𝑊𝐻𝑊† − 𝐸 ⊗ 𝜎𝑦

        =
𝜅 𝑊𝑌𝑊† − 𝑦 𝜅 𝑊𝑋𝑊† − 𝑥 − ⅈ 𝑊𝐻𝑊† − 𝐸

𝜅 𝑊𝑋𝑊† − 𝑥 + ⅈ 𝑊𝐻𝑊† − 𝐸 −𝜅 𝑊𝑌𝑊† − 𝑦
 

At 𝑥, 𝑦 = 0,0 , this spectral localizer is skew-symmetric

So can define the energy-resolved invariant

 𝜁𝐸 𝑋, 𝑌, 𝐻 = sign Pf 𝐿 𝑥,𝑦,𝐸 𝑊𝑋𝑊†, 𝑊𝑌𝑊†, 𝑊𝐻𝑊†

  𝜁𝐸 ∈ −1,1 ≅ ℤ2

  as expected

Lee, Wong, Vaidya, Loring, and AC, in submission.

Same definition of topological protection

𝜇 𝑥1,…,𝑥𝑑,𝐸
C = 𝜎min[𝐿 𝑥1,…,𝑥𝑑,𝐸 𝑋1, … , 𝑋𝑑 , 𝐻 ]

Invariant distinguishes systems based 
on what atomic limits they can be path 

continued to

𝑊𝐻𝑊† ⊤
= 𝑊𝐻𝑊†  𝜎𝑦

⊤ = −𝜎𝑦

𝑊𝑋𝑊† ⊤
= −𝑊𝑋𝑊†  𝜎𝑥

⊤ = 𝜎𝑥

𝑊𝑌𝑊† ⊤
= −𝑊𝑌𝑊†  𝜎𝑧

⊤ = 𝜎𝑧
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Example: Classifying Fragile topology using a real C*-algebra

Lee, Wong, Vaidya, Loring, and AC, in submission.Ahn, Park, and Yang, Phys. Rev. X 9, 21013 (2019)

Ki Young Lee
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General framework for non-linear topology

Working in real-space

➢ Can handle spatial non-linearities for free

𝐿 𝑥,𝑦,𝐸 𝑋, 𝑌, 𝐻NL(𝛙)

=
𝐻NL(𝛙) − 𝐸𝐼 𝜅 𝑋 − 𝑥𝐼 − ⅈ𝜅(𝑌 − 𝑦𝐼)

𝜅 𝑋 − 𝑥𝐼 + ⅈ𝜅(𝑌 − 𝑦𝐼) −(𝐻NL(𝛙) − 𝐸𝐼)

𝐻NL 𝛙 = 𝐻0 + 𝑔 𝛙 2

On-site non-linearity

Stephan Wong
Wong, Loring, and AC, Phys. Rev. B 108, 195142 (2023)
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Topological dynamics

Non-linear 
topological 
dynamics!

Previously predicted 
and observed edge 
solitons

Leykam and Chong, Phys. 

Rev. Lett. 117, 143901 

(2016)

Mukherjee and Rechtsman, 

Phys. Rev. X 11, 041057 

(2021)

Wong, Loring, and AC, Phys. Rev. B 108, 195142 (2023)
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Reconfigurable topology in exciton-polariton lattices

Wong, Betzold, Höfling, AC, in submission.

Driven-dissipative exciton-polariton systems

 ⅈℏ
𝜕

𝜕𝑡
𝜓 = 𝐻0𝜓 − ⅈℏ

𝛾𝑐

2
𝜓 + 𝑔𝑐 𝜓 2𝜓 + 𝑔𝑟 + ⅈℏ

𝑅

2
𝑛𝑟𝜓 + 𝑆𝑝𝑟𝑜𝑏𝑒 

𝜕

𝜕𝑡
𝑛𝑟 = − 𝛾𝑟 + 𝑅 𝜓 2 𝑛𝑟 + 𝑆𝑝𝑢𝑚𝑝 Klembt et al., Nature 562, 552 (2018)

Parameters from
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Reformulating Maxwell’s equations

Linear, local media, allow for dispersion

For non-zero frequencies, can recast as:

The divergence equations can be recovered 
using  𝛻 ∙ 𝛻 × 𝐅 𝐱 = 0  for any vector field 
𝐅 𝐱 , for any 𝜔 ≠ 0

And finally an ordinary eigenvalue equation:

This yields a “self-consistent” 
generalized eigenvalue equation:

𝛻 × 𝐄 𝐱 = ⅈ𝜔 ҧ𝜇 𝐱, 𝜔 𝐇 𝐱

𝛻 × 𝐇 𝐱 = −ⅈ𝜔 ҧ𝜀 𝐱, 𝜔 𝐄 𝐱

𝛻 ∙ ҧ𝜀 𝐱, 𝜔 𝐄 𝐱 = 0

𝛻 ∙ ҧ𝜇 𝐱, 𝜔 𝐇 𝐱 = 0

−ⅈ𝛻 ×
ⅈ𝛻 ×

− 𝜔
ҧ𝜇 𝐱, 𝜔

ҧ𝜀 𝐱, 𝜔

𝐇 𝐱
𝐄 𝐱

= 0

𝑊𝛙 𝐱 = 𝜔𝑀(𝐱, 𝜔)𝛙(𝐱)

𝛙 𝐱 =
𝐇 𝐱
𝐄 𝐱

𝑊 = −ⅈ𝛻 ×
ⅈ𝛻 ×

𝑀 𝐱, 𝜔 =
ҧ𝜇 𝐱, 𝜔

ҧ𝜀 𝐱, 𝜔

𝐻𝛟 𝐱 = 𝜔𝛟(𝐱)

𝐻 = 𝑀−1/2 𝐱, 𝜔 𝑊𝑀−1/2 𝐱, 𝜔

𝛟 𝐱 = 𝑀1/2 𝐱, 𝜔 𝛙 𝐱
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Reformulating Maxwell’s equations

By discretizing the system
➢ Yee grid
➢ Finite-element method

Obtain a lattice, with effective Hamiltonian 

𝐻eff = 𝑀−1/2 𝐱, 𝜔 𝑊𝑀−1/2 𝐱, 𝜔

And the position operators,

  𝑋, 𝑌, 𝑍 

are diagonal matrices of the lattice vertex 
coordinates.

𝐿 𝑥,𝑦,𝜔 𝑋, 𝑌, 𝐻 =
𝐻 − 𝜔𝐼 𝜅 𝑋 − 𝑥𝐼 − ⅈ𝜅(𝑌 − 𝑦𝐼)

𝜅 𝑋 − 𝑥𝐼 + ⅈ𝜅(𝑌 − 𝑦𝐼) −(𝐻 − 𝜔𝐼)

Directly insert into spectral localizer:

❖ This reformulation maintains symmetries
➢ Can prove that

𝑀𝒰 = ±𝒰𝑀 ⟹  𝑀−1/2𝒰 = ±𝒰𝑀−1/2

❖ Numerically, it is impossible to do this for 
local markers involving projectors
➢ Projectors make sparse matrices dense.

AC and Loring, Nanophotonics 11, 4765 (2022)
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The Haldane and Raghu photonic Chern insulator

Haldane and Raghu, Phys. Rev. Lett. 100, 013904 (2008)

Raghu and Haldane, Phys. Rev. A 78, 033834 (2008)

2D photonic crystal 
of dielectric pillars in 
gyro-electric air

𝐿 𝑥,𝑦,𝜔 𝑋, 𝑌, 𝐻 =
𝐻 − 𝜔𝐼 𝜅 𝑋 − 𝑥𝐼 − ⅈ𝜅(𝑌 − 𝑦𝐼)

𝜅 𝑋 − 𝑥𝐼 + ⅈ𝜅(𝑌 − 𝑦𝐼) −(𝐻 − 𝜔𝐼)

𝐻 = 𝑀−1/2 𝐱, 𝜔 𝑊𝑀−1/2 𝐱, 𝜔

AC and Loring, Nanophotonics 11, 4765 (2022)
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Photonic Chern Quasicrystal

Wong, Loring, and AC, npj Nanophoton. 1, 19 (2024)

• 𝐿𝜆=(𝑥,𝑦,𝜔) 𝑋, 𝑌, 𝐻eff

• 𝐶𝜆
𝐿(𝑥, 𝑦, 𝜔) =

1

2
sig 𝐿 𝑥,𝑦,𝜔 (𝑋, 𝑌, 𝐻eff)

Vary 𝑥, at 𝜔 = 0.37 [2𝜋𝑐/𝑎] Vary 𝜔, at (𝑥0, 𝑦0)Magneto-optic

Stephan Wong
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Radiative environments

Wang et. al., Nature (2009)

Realized in microwaves

➢ Surrounded by a metal
➢ Acts as perfect electric conductor

Rechtsman et al., Nature (2013) Hafezi et al., Nat. Photon. (2013)

Later realizations in other platforms

➢ Surrounded by air
➢ Subject to bending loss

i.e., radiation

Any topological protection against 
environment perturbations?
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Radiative environments

LDOS shows a chiral edge 
resonance

Spectral localizer proves 
existence of chiral edge 
resonance

➢ Resonance… not 
state. 

➢ Couples to vacuum.

Dixon, Loring, and AC, Phys. Rev. Lett. 131, 213801 (2023)

𝐿 𝑥,𝑦,𝜔 𝑋, 𝑌, 𝐻 =
𝐻 − 𝜔𝐼 𝜅 𝑋 − 𝑥𝐼 − ⅈ𝜅(𝑌 − 𝑦𝐼)

𝜅 𝑋 − 𝑥𝐼 + ⅈ𝜅(𝑌 − 𝑦𝐼) − 𝐻 − 𝜔𝐼 †

For Chern number, non-Hermitian generalization is known

Yielding

𝐶 𝑥,𝑦,𝐸
𝐿 =

1

2
sig[𝐿 𝑥,𝑦,𝐸 𝑋, 𝑌, 𝐻 ] ∈ ℤ

(signature now counts positive real 
parts minus negative real parts)

Kahlil Y. Dixon

AC, Koekenbier, and Schulz-Baldes, 

J. Math. Phys. 64, 082102 (2023)
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Topology in Photonic Crystal Slabs

Wong, Loring, and AC, npj Nanophoton. 1, 19 (2024)
Stephan Wong

PML: radiative boundary

air: gapless environment

Schnyder et. al., Phys. 

Rev. B 78, 195125 (2008)

Topological edge states in slab 
with 2D strong topological invariant

➢ Disregard 𝑧-direction: 𝑥, 𝑦, 𝑧 → (𝑥, 𝑦)
(still have all vertices, just “forgetting” about 𝑧)

➢ Look at the change of topology in the (𝑥, 𝑦)-plane

𝐶 = 0 𝐶 = 1

“Trivial”

“Non-trivial”
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Operators don’t care about physical meaning

In 1D class AIII (e.g., SSH model), chiral symmetry protects states at 𝐸 = 0

 𝐻Π = −Π𝐻,   𝑋Π = Π𝑋,    Π2 = 𝐼,    Π = Π†

Local winding number:

  𝜐 𝑥,0 =
1

2
sig (𝜅 𝑋 − 𝑥𝐼 + ⅈ𝐻)Π ∈ ℤ

But crystalline symmetry can yield similar commutation relations

 𝐻𝒮 = 𝒮𝐻,   𝑋𝒮 = −𝒮𝑋,    𝒮2 = 𝐼,    𝒮 = 𝒮†

Local “crystalline winding number,” protects states at 𝑥 = 0

  ζ 0,𝐸
𝒮 =

1

2
sig (𝐻 − 𝐸𝐼 + ⅈ𝜅𝑋)𝒮 ∈ ℤ
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Local markers for crystalline topology

AC, Loring, and Schulz-Baldes, Phys. Rev. Lett. 132, 073803 (2024)

Local “reflection winding number,” protects states at 𝑦 = 0

   ζ
0,𝜔2

ℛ𝑦 =
1

2
sig 𝐻 − 𝜔𝐼 + ⅈ𝜅𝑌 ℛ𝑦 ∈ ℤ

Wu, Hu, Phys. Rev. Lett. 114, 223901 (2015)

Smirnova et al., Phys. Rev. Lett., 123, 103901 (2019)

Kruk et al., Nano Lett. 21, 4592 (2021)
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A “mathematical SEM”

If 𝜇 𝐱,𝐸
C  is small – system has a 

nearby state

If 𝜇 𝐱,𝐸
C  is large – the local 

topological phase is robust

➢ Can be classified with

• Chern number 𝐶 𝐱,𝐸
L

• Quantum spin Hall 𝑆 𝐱,𝐸
L

• Winding number 𝜈𝐱
L

• Crystalline topology 𝜁𝐸
L,𝑆

• etc…

Physics-oriented tutorial:

AC and Loring, APL Photonics 

9, 111102 (2024)
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