Postdoctoral Scholar, Penn State University

[32] **A. Cerjan**, M. Jürgensen, W. A. Benalcazar, S. Mukherjee, and M. C. Rechtsman
"Observation of a higher-order topological bound state in the continuum," *Phys. Rev. Lett.* **125**, 213901 (2020).
Supplementary material:

*Selected as an APS Editors' Suggestion*

[31] **A. Cerjan**, M. Wang, S. Huang, K. P. Chen, and M. C. Rechtsman
"Thouless pumping in disordered photonic systems," *Light Sci. Appl.* **9**, 178 (2020).

[30] M. Benzaouia, **A. Cerjan**, and S. G. Johnson
"Is single-mode lasing possible in an infinite periodic system?" *Appl. Phys. Lett.* **117**, 051102 (2020).
Supplementary material:

*Selected as an Editor's Pick*

[29] **A. Cerjan**, A. Oskooi, S.-L. Chua, S. G. Johnson
"Modeling lasers and saturable absorbers via multilevel atomic media in the Meep FDTD software: Theory and implementation," arXiv: 2007.09329.

[28] W. A. Benalcazar and **A. Cerjan**,
"Bound states in the continuum of higher-order topological insulators," *Phys. Rev. B - Rapid Communication* **101** 161116(R) (2020).
Supplementary material:

[27] **A. Cerjan**, S. Bittner, M. Constantin, M. Guy, Y. Zeng, Q. J. Wang, H. Cao, and A. D. Stone,
"Multimode lasing in wave-chaotic semiconductor microlasers," *Phys. Rev. A* **100**, 063814 (2019).

[26] **A. Cerjan**,
"A Whole Surface of Exceptional Points," *Physics* **12**, 138 (2019).

[25] **A. Cerjan**, C. W. Hsu, and M. C. Rechtsman,
"Bound States in the Continuum through Environmental Design," *Phys. Rev. Lett.* **123**, 023902 (2019).
Supplementary material:

[24] **A. Cerjan**, S. Huang, M. Wang, K. P. Chen, Y. D. Chong, and M. C. Rechtsman,
"Experimental realization of a Weyl exceptional ring," *Nat. Photonics* **13**, 623 (2019).
Supplementary material:

[23] A. Pick, **A. Cerjan**, and S. G. Johnson,
"*Ab initio* theory of quantum fluctuations and relaxation oscillations in multimode lasers," *J. Opt. Soc. Am. B* **36**, C22 (2019).

[22] **A. Cerjan**, M. Xiao, L. Yuan, and S. Fan,
"Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges," *Phys. Rev. B* **97**, 075128 (2018).

*Selected as an APS Editors' Suggestion*

[21] **A. Cerjan** and S. Fan,
"Complete photonic bandgaps in supercell photonic crystals," *Phys. Rev. A - Rapid Communication* **96**, 051802(R) (2017).

[20] **A. Cerjan** and S. Fan,
"Achieving Arbitrary Control over Pairs of Polarization States Using Complex Birefringent Metamaterials," *Phys. Rev. Lett.* **118**, 253902 (2017).
Supplementary material:

[19] Y. Shi, **A. Cerjan**, and S. Fan,
"Acousto-optic finite-difference frequency-domain algorithm for first-principles simulations of on-chip acousto-optic devices," *APL Photonics* **2**, 020801 (2017).
Supplementary material:

[18] **A. Cerjan** and S. Fan, "Effects of non-uniform distributions of gain and loss in photonic crystals,"
*New J. Phys.* **18**, 125007 (2016).

[17] **A. Cerjan**, B. Redding, L. Ge, S. F. Liew, H. Cao, A. D. Stone,
"Controlling mode competition by tailoring the spatial pump distribution in a laser: a resonance-based approach," *Opt. Express* **24**, 26006 (2016).

[16] **A. Cerjan** and S. Fan,
"Eigenvalue dynamics in the presence of non-uniform gain and loss," *Phys. Rev. A* **94**, 033857 (2016).

[15] Y. Shen, G. Fang, **A. Cerjan**, Z. Chi, S. Fan, and C. Jin,
"Slanted gold mushroom array: a switchable bi/tridirectional surface plasmon polariton splitter," *Nanoscale* **8**, 15505 (2016).

[14] **A. Cerjan**, A. Raman, and S. Fan,
"Exceptional Contours and Band Structure Design in Parity-Time Symmetric Photonic Crystals," *Phys. Rev. Lett.* **116**, 203902 (2016).
Supplementary material:

[13] B. H. Hokr, **A. Cerjan**, J. V. Thompson, L. Yuan, S. F. Liew, J. N. Bixler, G. D. Noojin, R. J. Thomas, H. Cao, A. D. Stone, B. A. Rockwell, M. O. Scully, and V. V. Yakovlev,
"Evidence of Anderson localization effects in random Raman lasing," *Proc. of SPIE* **9731**, 973110 (2016).

[12] L. Ge, D. Liu, **A. Cerjan**, S. Rotter, H. Cao, S. G. Johnson, H. E. Türeci, and A. D. Stone,
"Interaction-induced mode switching in steady-state microlasers," *Opt. Express* **24**, 41 (2016).

[11] **A. Cerjan** and A. D. Stone,
"Why the laser linewidth is so narrow: A modern perspective," *Phys. Scr.* **91**, 013003 (2016).

[10] **A. Cerjan**, A. Pick, Y. D. Chong, S. G. Johnson, and A. D. Stone,
"Quantitative test of general theories of the intrinsic laser linewidth," *Opt. Express* **23**, 28316 (2015).

[9] A. Pick, **A. Cerjan**, D. Liu, A. W. Rodriguez, A. D. Stone, Y. D. Chong, and S. G. Johnson,
"Ab-initio multimode linewidth theory for arbitrary inhomogeneous laser cavities," *Phys. Rev. A* **91**, 063806 (2015).

*Selected as an APS Editors' Suggestion*

[8] **A. Cerjan**, Y. D. Chong, and A. D. Stone, "Steady-state *ab initio* laser theory for complex
gain media," *Opt. Express* **23**, 6455 (2015).

*Featured in Advances In Engineering* —

[7] B. Redding, **A. Cerjan**, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao,
"Low-Spatial Coherence Electrically-Pumped Semiconductor Laser for Speckle-Free
Full-Field Imaging," *Proc. Natl. Acad. Sci. USA* **112**, 1304 (2015).
Supplementary material:

*Featured in Optics and Photonics News* —

*Selected for a Microscopy Today Innovation Award* —

[6] S. Esterhazy, D. Liu, M. Liertzer, **A. Cerjan**, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G.
Johnson, and S. Rotter, "Scalable numerical approach for the
steady-state *ab-initio* laser theory," *Phys. Rev. A* **90**, 023816 (2014).

[5] **A. Cerjan** and A. D. Stone, "Steady-state *ab initio* theory of lasers
with injected signals," *Phys. Rev. A* **90**, 013840 (2014).

[4] M. Liertzer, L. Ge, **A. Cerjan**, A. D. Stone, H. E. Türeci, and S. Rotter, "Pump-induced
exceptional points in lasers," *Phys. Rev. Lett.* **108**, 173901 (2012).

[3] **A. Cerjan**, Y. D. Chong, L. Ge, and A. D. Stone, "Steady-state ab-initio laser theory for
N-level lasers," *Opt. Express* **20**, 474 (2012).

[2] **A. Cerjan** and C. Cerjan, "Orbital angular momentum of Laguerre-Gaussian beams beyond
the paraxial approximation," *J. Opt. Soc. Am. A* **28**, 2253 (2011).

[1] **A. Cerjan** and C. Cerjan, "Analytic solution of flat-top Gaussian and Laguerre-Gaussian
laser field components," *Opt. Lett.* **35**, 3465 (2010).

[1] S. Vaidya, J. Noh, **A. Cerjan**, and M. C. Rechtsman
"Observation of a charge-2 photonic Weyl point in the infrared," arXiv: 2002.03215.

**A. Cerjan**, "Topological photonic systems: from structure to function,"
Rice University, February 18, 2020.

**A. Cerjan**, "Advances in non-Hermitian and topological photonics,"
Center for Theoretical Physics of Complex Systems, Institute for Basic Science, South Korea, October 22, 2019.

**A. Cerjan**, "Weyl points and Weyl exceptional rings in helical waveguide arrays,"
Weyl Fermions in Condensed Matter, International Institute of Physics, Brazil, August 7, 2019.

**A. Cerjan**, "Exceptional contours formed in non-Hermitian topological photonic systems,"
Banff International Research Station Workshop on Photonic Topological Insulators, September 14, 2017.

**A. Cerjan**, "Photonic systems with patterned gain and loss,"
Northrop Grumman Next Workshop on the Physics of Light Matter Interactions and Excited State Dynamics, October 25-27, 2016.

**A. Cerjan**, "Exceptional contours and eigenvalue dynamics in systems with non-uniform gain and loss,"
Applied Physics Special SSO Seminar, Yale University, August 24, 2016.

**A. Cerjan**, "Quantitative test of general theories of the intrinsic laser linewidth,"
Physics of Quantum Electronics Follow-on Workshop, Texas A&M, January 12-14, 2015.

Fundamental physics and device design using the steady-state *ab initio* laser theory.