2024 
[47] 
A. Cerjan, T. A. Loring, and H. SchulzBaldes, "Local Markers for Crystalline Topology," Physical Review Letters 132, 073803 (2024). 

[46] 
A. Farhi, A. Cerjan, and A. D. Stone, "Generating and processing optical waveforms using spectral singularities," Physical Review A 109, 013512 (2024). 

[45]† 
A. Cerjan and T. A. Loring, "Even spheres as joint spectra of matrix models," Journal of Mathematical Analysis and Applications 531, 127892 (2024). 


2023 
[44] 
K. Y. Dixon, T. A. Loring, and A. Cerjan, "Classifying Topology in Photonic Heterostructures with Gapless Environments," Physical Review Letters 131, 213801 (2023). 


[43] 
S. Wong, T. A. Loring, and A. Cerjan, "Probing topology in nonlinear topological materials using numerical Ktheory," Physical Review B 108, 195142 (2023). 

[42]† 
A. Cerjan, L. Koekenbier, and H. SchulzBaldes, "Spectral localizer for linegapped nonHermitian systems," Journal of Mathematical Physics 64, 082102 (2023). 

[41] 
W. Cheng*, A. Cerjan*, S.Y. Chen, E. Prodan, T. A. Loring, and C. Prodan, "Revealing topology in metals using experimental protocols inspired by Ktheory," Nature Communications 14, 3071 (2023).
Featured in a Nature Physics News & Views


[40]† 
A. Cerjan, T. A. Loring, and F. Vides, "Quadratic pseudospectrum for identifying localized states," Journal of Mathematical Physics 64, 023501 (2023).


2022 
[39] 
C. F. Doiron, I. Brener, and A. Cerjan, "Realizing symmetryguaranteed pairs of bound states in the continuum in metasurfaces," Nature Communications 13, 7534 (2022).


[38] 
A. Cerjan and T. A. Loring, "An operatorbased approach to topological photonics," Nanophotonics 11, 4765 (2022).


[37] 
A. Cerjan and T. A. Loring, "Local invariants identify topology in metals and gapless systems," Physical Review B 106, 064109 (2022).


[36] 
J. Murray, A. Cerjan, and B. Redding, "Massively distributed fiber strain sensing using Brillouin lasing," Optics Express 30, 25765 (2022).


[35] 
W. A. Benalcazar and A. Cerjan, "ChiralSymmetric HigherOrder Topological Phases of Matter," Physical Review Letters 128, 127601 (2022).


[34] 
J. Murray, A. Cerjan, and B. Redding, "Distributed Brillouin fiber laser sensor," Optica 9, 80 (2022).
Featured in Optics and Photonics News Year in Review


[33] 
C. Jörg*, S. Vaidya*, J. Noh, A. Cerjan, S. Augustine, G. von Freymann, and M. C. Rechtsman, "Observation of Quadratic (Charge2) Weyl Point Splitting in NearInfrared Photonic Crystals," Laser & Photonics Reviews 16, 2100452 (2022).


2021 
[32] 
A. Cerjan*, C. Jörg*, S. Vaidya, S. Augustine, W. A. Benalcazar, C. W. Hsu, G. von Freymann, and M. C. Rechtsman, "Observation of bound states in the continuum embedded in symmetry bandgaps," Science Advances 7, eabk1117 (2021).


[31] 
S. Vaidya, W. A. Benalcazar, A. Cerjan, and M. C. Rechtsman, "Pointdefectlocalized bound states in the continuum in photonic crystals and structured fibers," Physical Review Letters 127, 023605 (2021).


2020 
[30] 
S. Vaidya, J. Noh, A. Cerjan, C. Jörg, G. von Freymann, and M. C. Rechtsman, "Observation of a Charge2 Photonic Weyl Point in the Infrared," Physical Review Letters 125, 253902 (2020).
Selected as an APS Editors' Suggestion


[29] 
A. Cerjan, M. Jürgensen, W. A. Benalcazar, S. Mukherjee, and M. C. Rechtsman, "Observation of a higherorder topological bound state in the continuum," Physical Review Letters 125, 213901 (2020).
Selected as an APS Editors' Suggestion


[28] 
A. Cerjan, M. Wang, S. Huang, K. P. Chen, and M. C. Rechtsman, "Thouless pumping in disordered photonic systems," Light: Science & Applications 9, 178 (2020).


[27] 
M. Benzaouia, A. Cerjan, and S. G. Johnson, "Is singlemode lasing possible in an infinite periodic system?" Applied Physics Letters 117, 051102 (2020).
Selected as an Editor's Pick


[26] 
W. A. Benalcazar and A. Cerjan, "Bound states in the continuum of higherorder topological insulators," Physical Review B 101, 161116(R) (2020).


2019 
[25] 
A. Cerjan, S. Bittner, M. Constantin, M. Guy, Y. Zeng, Q. J. Wang, H. Cao, and A. D. Stone, "Multimode lasing in wavechaotic semiconductor microlasers," Physical Review A 100, 063814 (2019).


[24] 
A. Cerjan, C. W. Hsu, and M. C. Rechtsman, "Bound States in the Continuum through Environmental Design," Physical Review Letters 123, 023902 (2019).


[23] 
A. Cerjan, S. Huang, M. Wang, K. P. Chen, Y. D. Chong, and M. C. Rechtsman, "Experimental realization of a Weyl exceptional ring," Nature Photonics 13, 623 (2019).


[22] 
A. Pick, A. Cerjan, and S. G. Johnson, "Ab initio theory of quantum fluctuations and relaxation oscillations in multimode lasers," Journal of the Optical Society of America B 36, C22 (2019).


2010 – 2018 
[21] 
A. Cerjan, M. Xiao, L. Yuan, and S. Fan, "Effects of nonHermitian perturbations on Weyl Hamiltonians with arbitrary topological charges," Physical Review B 97, 075128 (2018).
Selected as an APS Editors' Suggestion


[20] 
A. Cerjan and S. Fan, "Complete photonic bandgaps in supercell photonic crystals," Physical Review A 96, 051802(R) (2017).


[19] 
A. Cerjan and S. Fan, "Achieving Arbitrary Control over Pairs of Polarization States Using Complex Birefringent Metamaterials," Physical Review Letters 118, 253902 (2017).


[18] 
Y. Shi, A. Cerjan, and S. Fan, "Acoustooptic finitedifference frequencydomain algorithm for firstprinciples simulations of onchip acoustooptic devices," APL Photonics 2, 020801 (2017).


[17] 
A. Cerjan and S. Fan, "Effects of nonuniform distributions of gain and loss in photonic crystals," New Journal of Physics 18, 125007 (2016).


[16] 
A. Cerjan, B. Redding, L. Ge, S. F. Liew, H. Cao, A. D. Stone, "Controlling mode competition by tailoring the spatial pump distribution in a laser: a resonancebased approach," Optics Express 24, 26006 (2016).



[15] 
A. Cerjan and S. Fan, "Eigenvalue dynamics in the presence of nonuniform gain and loss," Physical Review A 94, 033857 (2016).


[14] 
Y. Shen, G. Fang, A. Cerjan, Z. Chi, S. Fan, and C. Jin, "Slanted gold mushroom array: a switchable bi/tridirectional surface plasmon polariton splitter," Nanoscale 8, 15505 (2016).


[13] 
A. Cerjan, A. Raman, and S. Fan, "Exceptional Contours and Band Structure Design in ParityTime Symmetric Photonic Crystals," Physical Review Letters 116, 203902 (2016).


[12] 
L. Ge, D. Liu, A. Cerjan, S. Rotter, H. Cao, S. G. Johnson, H. E. Türeci, and A. D. Stone, "Interactioninduced mode switching in steadystate microlasers," Optics Express 24, 41 (2016).


[11] 
A. Cerjan and A. D. Stone, "Why the laser linewidth is so narrow: A modern perspective," Physica Scripta 91, 013003 (2016).


[10] 
A. Cerjan, A. Pick, Y. D. Chong, S. G. Johnson, and A. D. Stone, "Quantitative test of general theories of the intrinsic laser linewidth," Optics Express 23, 28316 (2015).


[9] 
A. Pick, A. Cerjan, D. Liu, A. W. Rodriguez, A. D. Stone, Y. D. Chong, and S. G. Johnson, "Abinitio multimode linewidth theory for arbitrary inhomogeneous laser cavities," Physical Review A 91, 063806 (2015).
Selected as an APS Editors' Suggestion


[8] 
A. Cerjan, Y. D. Chong, and A. D. Stone, "Steadystate ab initio laser theory for complex gain media," Optics Express 23, 6455 (2015).
Featured in Advances In Engineering


[7] 
B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, "LowSpatial Coherence ElectricallyPumped Semiconductor Laser for SpeckleFree FullField Imaging," Proceedings of the National Academy of Sciences USA 112, 1304 (2015).
Featured in Optics and Photonics News
Selected for a Microscopy Today Innovation Award


[6] 
S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, "Scalable numerical approach for the steadystate abinitio laser theory," Physical Review A 90, 023816 (2014).


[5] 
A. Cerjan and A. D. Stone, "Steadystate ab initio theory of lasers with injected signals," Physical Review A 90, 013840 (2014).


[4] 
M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, "Pumpinduced exceptional points in lasers," Physical Review Letters 108, 173901 (2012).


[3] 
A. Cerjan, Y. D. Chong, L. Ge, and A. D. Stone, "Steadystate abinitio laser theory for Nlevel lasers," Optics Express 20, 474 (2012).


[2] 
A. Cerjan and C. Cerjan, "Orbital angular momentum of LaguerreGaussian beams beyond the paraxial approximation," Journal of the Optical Society of America A 28, 2253 (2011).


[1] 
A. Cerjan and C. Cerjan, "Analytic solution of flattop Gaussian and LaguerreGaussian laser field components," Optics Letters 35, 3465 (2010).

