2024 |
[51] |
A. Cerjan and T. A. Loring, "Classifying photonic topology using the spectral
localizer and numerical K-theory," APL Photonics 9, 111102 (2024).
Selected as a Featured Article |
|
[50] |
C. Doiron, I. Brener, and A. Cerjan, "Dual-Band Polarization Control with Pairwise Positioning of Polarization Singularities in Metasurfaces," Physical Review Letters 133, 213802 (2024). |
|
[49] |
X. Gao, H. He, S. Sobolewski, A. Cerjan, and C. W. Hsu, "Dynamic gain and frequency comb formation in exceptional-point lasers," Nature Communications 15, 8618 (2024). |
|
[48] |
S. Wong, T. A. Loring, and A. Cerjan, "Classifying topology in photonic crystal slabs with radiative environments," npj Nanophotonics 1, 19 (2024). |
|
[47] |
A. Cerjan, T. A. Loring, and H. Schulz-Baldes, "Local Markers for Crystalline Topology," Physical Review Letters 132, 073803 (2024). |
|
[46] |
A. Farhi, A. Cerjan, and A. D. Stone, "Generating and processing optical waveforms using spectral singularities," Physical Review A 109, 013512 (2024). |
|
[45]† |
A. Cerjan and T. A. Loring, "Even spheres as joint spectra of matrix models," Journal of Mathematical Analysis and Applications 531, 127892 (2024). |
|
|
2023 |
[44] |
K. Y. Dixon, T. A. Loring, and A. Cerjan, "Classifying Topology in Photonic Heterostructures with Gapless Environments," Physical Review Letters 131, 213801 (2023). |
|
|
[43] |
S. Wong, T. A. Loring, and A. Cerjan, "Probing topology in nonlinear topological materials using numerical K-theory," Physical Review B 108, 195142 (2023). |
|
[42]† |
A. Cerjan, L. Koekenbier, and H. Schulz-Baldes, "Spectral localizer for line-gapped non-Hermitian systems," Journal of Mathematical Physics 64, 082102 (2023). |
|
[41] |
W. Cheng*, A. Cerjan*, S.-Y. Chen, E. Prodan, T. A. Loring, and C. Prodan, "Revealing topology in metals using experimental protocols inspired by K-theory," Nature Communications 14, 3071 (2023).
Featured in a Nature Physics News & Views
|
|
[40]† |
A. Cerjan, T. A. Loring, and F. Vides, "Quadratic pseudospectrum for identifying localized states," Journal of Mathematical Physics 64, 023501 (2023).
|
|
2022 |
[39] |
C. F. Doiron, I. Brener, and A. Cerjan, "Realizing symmetry-guaranteed pairs of bound states in the continuum in metasurfaces," Nature Communications 13, 7534 (2022).
|
|
[38] |
A. Cerjan and T. A. Loring, "An operator-based approach to topological photonics," Nanophotonics 11, 4765 (2022).
|
|
[37] |
A. Cerjan and T. A. Loring, "Local invariants identify topology in metals and gapless systems," Physical Review B 106, 064109 (2022).
|
|
[36] |
J. Murray, A. Cerjan, and B. Redding, "Massively distributed fiber strain sensing using Brillouin lasing," Optics Express 30, 25765 (2022).
|
|
[35] |
W. A. Benalcazar and A. Cerjan, "Chiral-Symmetric Higher-Order Topological Phases of Matter," Physical Review Letters 128, 127601 (2022).
|
|
[34] |
J. Murray, A. Cerjan, and B. Redding, "Distributed Brillouin fiber laser sensor," Optica 9, 80 (2022).
Featured in Optics and Photonics News Year in Review
|
|
[33] |
C. Jörg*, S. Vaidya*, J. Noh, A. Cerjan, S. Augustine, G. von Freymann, and M. C. Rechtsman, "Observation of Quadratic (Charge-2) Weyl Point Splitting in Near-Infrared Photonic Crystals," Laser & Photonics Reviews 16, 2100452 (2022).
|
|
2021 |
[32] |
A. Cerjan*, C. Jörg*, S. Vaidya, S. Augustine, W. A. Benalcazar, C. W. Hsu, G. von Freymann, and M. C. Rechtsman, "Observation of bound states in the continuum embedded in symmetry bandgaps," Science Advances 7, eabk1117 (2021).
|
|
[31] |
S. Vaidya, W. A. Benalcazar, A. Cerjan, and M. C. Rechtsman, "Point-defect-localized bound states in the continuum in photonic crystals and structured fibers," Physical Review Letters 127, 023605 (2021).
|
|
2020 |
[30] |
S. Vaidya, J. Noh, A. Cerjan, C. Jörg, G. von Freymann, and M. C. Rechtsman, "Observation of a Charge-2 Photonic Weyl Point in the Infrared," Physical Review Letters 125, 253902 (2020).
Selected as an APS Editors' Suggestion
|
|
[29] |
A. Cerjan, M. Jürgensen, W. A. Benalcazar, S. Mukherjee, and M. C. Rechtsman, "Observation of a higher-order topological bound state in the continuum," Physical Review Letters 125, 213901 (2020).
Selected as an APS Editors' Suggestion
|
|
[28] |
A. Cerjan, M. Wang, S. Huang, K. P. Chen, and M. C. Rechtsman, "Thouless pumping in disordered photonic systems," Light: Science & Applications 9, 178 (2020).
|
|
[27] |
M. Benzaouia, A. Cerjan, and S. G. Johnson, "Is single-mode lasing possible in an infinite periodic system?" Applied Physics Letters 117, 051102 (2020).
Selected as an Editor's Pick
|
|
[26] |
W. A. Benalcazar and A. Cerjan, "Bound states in the continuum of higher-order topological insulators," Physical Review B 101, 161116(R) (2020).
|
|
2019 |
[25] |
A. Cerjan, S. Bittner, M. Constantin, M. Guy, Y. Zeng, Q. J. Wang, H. Cao, and A. D. Stone, "Multimode lasing in wave-chaotic semiconductor microlasers," Physical Review A 100, 063814 (2019).
|
|
[24] |
A. Cerjan, C. W. Hsu, and M. C. Rechtsman, "Bound States in the Continuum through Environmental Design," Physical Review Letters 123, 023902 (2019).
|
|
[23] |
A. Cerjan, S. Huang, M. Wang, K. P. Chen, Y. D. Chong, and M. C. Rechtsman, "Experimental realization of a Weyl exceptional ring," Nature Photonics 13, 623 (2019).
|
|
[22] |
A. Pick, A. Cerjan, and S. G. Johnson, "Ab initio theory of quantum fluctuations and relaxation oscillations in multimode lasers," Journal of the Optical Society of America B 36, C22 (2019).
|
|
2010 – 2018 |
[21] |
A. Cerjan, M. Xiao, L. Yuan, and S. Fan, "Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges," Physical Review B 97, 075128 (2018).
Selected as an APS Editors' Suggestion
|
|
[20] |
A. Cerjan and S. Fan, "Complete photonic bandgaps in supercell photonic crystals," Physical Review A 96, 051802(R) (2017).
|
|
[19] |
A. Cerjan and S. Fan, "Achieving Arbitrary Control over Pairs of Polarization States Using Complex Birefringent Metamaterials," Physical Review Letters 118, 253902 (2017).
|
|
[18] |
Y. Shi, A. Cerjan, and S. Fan, "Acousto-optic finite-difference frequency-domain algorithm for first-principles simulations of on-chip acousto-optic devices," APL Photonics 2, 020801 (2017).
|
|
[17] |
A. Cerjan and S. Fan, "Effects of non-uniform distributions of gain and loss in photonic crystals," New Journal of Physics 18, 125007 (2016).
|
|
[16] |
A. Cerjan, B. Redding, L. Ge, S. F. Liew, H. Cao, A. D. Stone, "Controlling mode competition by tailoring the spatial pump distribution in a laser: a resonance-based approach," Optics Express 24, 26006 (2016).
|
|
|
[15] |
A. Cerjan and S. Fan, "Eigenvalue dynamics in the presence of non-uniform gain and loss," Physical Review A 94, 033857 (2016).
|
|
[14] |
Y. Shen, G. Fang, A. Cerjan, Z. Chi, S. Fan, and C. Jin, "Slanted gold mushroom array: a switchable bi/tridirectional surface plasmon polariton splitter," Nanoscale 8, 15505 (2016).
|
|
[13] |
A. Cerjan, A. Raman, and S. Fan, "Exceptional Contours and Band Structure Design in Parity-Time Symmetric Photonic Crystals," Physical Review Letters 116, 203902 (2016).
|
|
[12] |
L. Ge, D. Liu, A. Cerjan, S. Rotter, H. Cao, S. G. Johnson, H. E. Türeci, and A. D. Stone, "Interaction-induced mode switching in steady-state microlasers," Optics Express 24, 41 (2016).
|
|
[11] |
A. Cerjan and A. D. Stone, "Why the laser linewidth is so narrow: A modern perspective," Physica Scripta 91, 013003 (2016).
|
|
[10] |
A. Cerjan, A. Pick, Y. D. Chong, S. G. Johnson, and A. D. Stone, "Quantitative test of general theories of the intrinsic laser linewidth," Optics Express 23, 28316 (2015).
|
|
[9] |
A. Pick, A. Cerjan, D. Liu, A. W. Rodriguez, A. D. Stone, Y. D. Chong, and S. G. Johnson, "Ab-initio multimode linewidth theory for arbitrary inhomogeneous laser cavities," Physical Review A 91, 063806 (2015).
Selected as an APS Editors' Suggestion
|
|
[8] |
A. Cerjan, Y. D. Chong, and A. D. Stone, "Steady-state ab initio laser theory for complex gain media," Optics Express 23, 6455 (2015).
Featured in Advances In Engineering
|
|
[7] |
B. Redding, A. Cerjan, X. Huang, M. L. Lee, A. D. Stone, M. A. Choma, and H. Cao, "Low-Spatial Coherence Electrically-Pumped Semiconductor Laser for Speckle-Free Full-Field Imaging," Proceedings of the National Academy of Sciences USA 112, 1304 (2015).
Featured in Optics and Photonics News
Selected for a Microscopy Today Innovation Award
|
|
[6] |
S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G. Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and S. Rotter, "Scalable numerical approach for the steady-state ab-initio laser theory," Physical Review A 90, 023816 (2014).
|
|
[5] |
A. Cerjan and A. D. Stone, "Steady-state ab initio theory of lasers with injected signals," Physical Review A 90, 013840 (2014).
|
|
[4] |
M. Liertzer, L. Ge, A. Cerjan, A. D. Stone, H. E. Türeci, and S. Rotter, "Pump-induced exceptional points in lasers," Physical Review Letters 108, 173901 (2012).
|
|
[3] |
A. Cerjan, Y. D. Chong, L. Ge, and A. D. Stone, "Steady-state ab-initio laser theory for N-level lasers," Optics Express 20, 474 (2012).
|
|
[2] |
A. Cerjan and C. Cerjan, "Orbital angular momentum of Laguerre-Gaussian beams beyond the paraxial approximation," Journal of the Optical Society of America A 28, 2253 (2011).
|
|
[1] |
A. Cerjan and C. Cerjan, "Analytic solution of flat-top Gaussian and Laguerre-Gaussian laser field components," Optics Letters 35, 3465 (2010).
|
|